Archivi tag: XPS

Attenuazione del ponte termico del pilastro e gli ancoraggi per il laterizio

Leggi questo articolo grazie alle donazioni dei recenti “esperti” lettori Mauro Tassinari, Giovanni Faro, Guerra Stefano, Andrea Momesso, Gaddo Tarchiani, Ignazio Simone Boragina. Partecipa anche Tu, sostieni l’informazione attraverso espertocasaclima.com!


Quando lavoriamo per l’attenuazione del ponte termico di un pilastro, tipica situazione di un edificio che non prevede blocchi portanti o portanti sismici, ma blocchi di tamponamento in struttura in cemento armato, dobbiamo decidere:

  1. la stratigrafia dei materiali che compongono la parte di muratura interrotta dal pilastro
  2. gli ancoraggi.

Una costruzione di questo genere rispetta la sismica, ma

  • i blocchi in laterizio porizzato con facce rettificate ed elevate prestazioni termoisolanti che non necessitano di sistema a cappotto sul lato esterno pur garantendo prestazioni invernali e protezione estiva eccellenti sono allo stesso tempo elemento di costruzione ed isolamento termico
  • i pilastri sono la struttura, ma non sono isolamento termico

Quando si riveste il pilastro con isolante per attenuare il ponte termico di fatto non c’è più una diretta adesione del laterizio alla struttura e infatti l’intenzione progettuale era proprio quella di evitare le forti dispersioni termiche del volume riscaldato attraverso la struttura in cemento armato!

Gli ancoraggi metallici sono la soluzione al collegamento delle murature a doppia parete, e delle tamponature in laterizio. Certo, anche l’ancoraggio disturba le isoterme: trasmette, quindi disperde 🙁

Questa è una tipica piattina in acciaio per l’utilizzo con tassello sia per blocchi in laterizio rettificato che blocchi da posare con malta tradizionale che faccia a vista.

Il progetto esecutivo degli ancoraggi sarebbe onere del Direttore dei Lavori e/o della Committenza (per esperienza, il progetto esecutivo nasce dal buon senso in cantiere e all’ultimo momento)

Alcuni manuali parlano di:

  • almeno 1 ancoraggio per collegamento della muratura perimetrale con la muratura di spina
  • almeno 2 ancoraggi per blocchi di spessore > 25 cm (ogni 3 corsi)
  • almeno 3 ancoraggi per mq per pareti doppie con intercapedine
  • almeno 1 ancoraggio per collegamento della tamponatura alla struttura verticale
  • almeno 2 ancoraggi per collegamento della tamponatura alla struttura verticale (ogni 3 corsi per blocchi di spessore superiore a 25 cm): metà ancoraggio nel giunto di malta e l’altra metà tassellata meccanicamente sui fianchi dei pilastri.

Comunque io volevo parlare

  1. dell’ancoraggio (trasmette, quindi disperde)
  2. e del pilastro (che rappresenta un ponte termico da attenuare assolutamente)

Sapete che la conducibilità termica è una caratteristica del materiale! infatti la conduttività termica del cemento armato e dell’acciaio sono quanto di peggio si possa trovare in cantiere.

Se non vogliamo calcolare quanta energia riesce a fluire attraverso ancoraggi o pilastri almeno sforziamoci di fare le cose al meglio: isoliamo il pilastro senza lasciare fessure e riempiamo gli spazi vuoti con isolante sfuso.

Un materiale che ha un valore lambda molto basso è un buon coibente!

Ogni pannello isolante indica il suo lambda sull’etichetta, per esempio il valore 0,035 W/(mK) dell’ XPS goffrato ci dice che quel materiale lascia passare 0,035 Watt attraverso 1 metro di materiale in presenza di una differenza di temperatura tra una e l’altra parte di 1°Kelvin:

  • l’XPS contiene le dispersioni termiche 60 volte meglio rispetto al cemento armato
  • la perlite sfusa contiene le dispersioni termiche 30 volte meglio rispetto al cemento armato

Ma gli ancoraggi metallici come si comportano termicamente? Sono ponti termici puntuali e quindi non molto preoccupanti 😉 , ma  anche loro hanno una certa conducibilità termica alla temperatura di 20 °C:

  • Acciaio 52 W/mK
  • Acciaio inox 17 W/mK

Se possiamo, dobbiamo sempre preferire l’inox che si comporta quasi 4 volte meglio dell’acciaio.

Vuoi conoscere l’interessantissima storia dell’acciaio inossidabile? inizia da qui.


lettura senza banner pubblicitari grazie alla generosità dei lettori – dona anche Tu 😉 sostieni l’informazione attraverso espertocasaclima.com!


se stai scrollando una pagina dove visualizzi molti articoli uno sotto l’altro e vuoi intervenire con un tuo commento, clicca prima sul titolo del Post – in basso troverai la finestra per scrivere il tuo commento!


federico_sampaoli_espertocasaclimacom  ipha_member

articolo ideato, scritto e diretto da Federico Sampaoli, impegnato a favore delle persone, del comfort e dell’open information, titolare e caporedattore di espertoCasaClima – blog di informazione e comunicazione

Il mio profilo LinkedIn

Entra anche Tu nella lista dei sostenitori del Blog espertoCasaClima :

Visita il profilo di federico su Pinterest.

La coibentazione di un tetto che ho realizzato 10 anni fa

Leggi questo articolo grazie alle donazioni dei recenti “esperti” lettori Andrea Momesso, Gaddo Tarchiani, Giovanni Faro, Ignazio Simone Boragina, Luca Alunni. Partecipa anche Tu, sostieni l’informazione attraverso espertocasaclima.com!


Rileggiamo il commento di Mauro, scritto la settimana scorsa:

Buonasera, gradirei un vostro parere in merito al miglioramento della coibentazione di un tetto che ho realizzato 10 anni fa.
Abito a Verona e quando ho realizzato il tetto in legno ho usato sopra ai travi:

  1. assito da 2 cm
  2. xps, polistirene estruso 3cm
  3. pannello termoisolante ventilato per copertura a falda con Neopor® Tipo 150
  4. ventilazione 5cm
  5. OSB 1cm
  6. tegole in cemento

Purtroppo quando ho progettato il mio tetto non conoscevo l’importanza dello sfasamento. Infatti, mi sono reso conto che se durante l’inverno l’isolamento non è abbastanza soddisfacente, durante l’estate va male.

Ora volevo aggiungere internamente, sotto l’assito:

  1. fibra di legno 20cm. Il mio fornitore ha proposto un prodotto con le seguenti caratteristiche: Conduttività termica 0,040W/mK, calore specifico 2400 J/kgK e densità pari a 150 kg/m3
  2. nuovo assito da 2 cm per chiudere il tutto (o consigliate un pannello di cartongesso?).

Gradirei ricevere un vostro consiglio, sapere se ritenete un intervento valido ed, eventualmente a quanto salirebbe lo sfasamento. Attendendo una vostra risposta vi ringrazio anticipatamente e complimenti per il sito.


Ora nessuno si ingelosisca perchè a Mauro rispondo con un articolo, lo faccio per tutti i lettori che si trovano in situazioni simili, e per Mauro.

Questa è la stratigrafia del tetto in legno di Mauro:

Descrizione degli strati Spessore (s) [m] Conduttività termica (l) [W/mK] Resistenza termica [mqK/W] Calore specifico (c) [J/kgK] Densità (?) [kg/m3]
Rsi Aria Strato laminare interno 1 2 3 4
1 Assito 0,020 0,130 2100 600
2 xps 0,030 0,035 1450 33
3 EPS Neopor® Tipo 150 0,050 0,031 1500 15
4 ventilazione

tipi climatici italianiCi sono moltissime coperture in legno con soluzioni di questo tipo e in tutte le zone climatiche italiane.

Sì sì, anche in zone calde, ma non pensiamo che in zona climatica E (come tutto il nord d’Italia) si possa vivere bene d’estate con uno sfasamento di 2 ore e un fattore di attenuazione pari a 0,96!

 

Gli strati del calcolo delle Proprietà termiche si fermano allo strato d’aria (dove il pacchetto tetto termina), ovviamente anche il pannello in OSB e la tegola aiutano ad ombreggiare il tetto e aiutano un po’.

Secondo le linee Guida nazionali sulla Certificazione energetica degli edifici questa prestazione estiva è mediocre e la qualità prestazionale estiva è definita V (la peggiore tra: I  II  III   IV   V)

Acusticamente parlando, solo a leggere questi 3 strati, viene il dubbio: posso avere protezione acustica da un materiale che non è fibroso? Non credo proprio che l’EPS e l’XPS offrano una qualche sorta di abbattimento acustico. Per un tetto l’acustica è un valore importante? Per un tetto no, per Mauro che ci vive sotto sì eccome.

In ogni caso, materiali così inadeguati per un tetto in legno garantiscono in inverno un contenimento delle dispersioni termiche:

Trasmittanza   U [W/m2K] 0,362

I pannelli termoisolanti ventilati per copertura a falda sono battentati ad incastro su tutti i lati e sono costituiti di isolante EPS con grafite con ottima resistenza alla compressione e una lastra di OSB 3 che fa da piano di posa per il manto di copertura.

Di solito il committente che sta raccogliendo alcuni preventivi per il suo tetto trova in questi pannelli LA soluzione ideale di semplicità e prezzo giusto. Ma è la soluzione ideale? Sulle brochure sembrerebbe di sì.

La convinzione viene anche dalla pubblicità delle caratteristiche tecniche dei pannelli termoisolanti ventilati per copertura a falda:

la brochure parla di:

bassa conducibilità, capacità di riflettere e assorbire i raggi infrarossi, niente gas dannosi, traspirabilità (in realtà un freno al vapore con Sd pari a circa 2,5m), leggerezza, stabilità, maneggevolezza, non trattiene umidità, miglioramento del comfort abitativo, riduzione dei costi per riscaldamento e raffrescamento, protezione delle strutture (circa le strutture lignee si dovrebbe aprire una discussione a parte, poi vedremo perchè). Musica per le nostre orecchie.

Continuo a conoscere committenti che vanno a caccia di soluzioni! Ma dove sono finiti i progettisti? Non sono loro a proporre le soluzioni?

Fin qui ho criticato i pannelli termoisolanti ventilati  come soluzione per una copertura in legno, ma volete conoscere l’aspetto ancora più preoccupante?

Le indicazioni di POSA:

Cito: i pannelli termoisolanti ventilati vengono posati direttamente sulla struttura del tetto, sia essa realizzata da travi in legno, da soletta in laterocemento o assito. Possono essere incollati o fissati meccanicamente. 🙁

Questa indicazione può valere solamente per un tetto con soletta in laterocemento dove posso immaginare che la tenuta all’aria del volume riscaldato sia garantito dalla soletta integra e il rivestimento interno in intonaco: chi si occuperà di gestire il vapore dell’ambiente riscaldato sarà proprio lo strato di intonaco interno.

Nel caso del tetto di Mauro, in legno, non si può affidare al tavolato la gestione della migrazione del vapore, nè pensare che la tenuta all’aria la facciano le tavole o le perline accostate.

Con quelle indicazioni di posa, non solo si giustifica un carpentiere in un lavoro non ben fatto e con rischi di condense interstiziali per la struttura in legno, si dà al committente un’idea di semplicità di esecuzione e tranquillità di soluzione che nasconde delle problematiche successivamente impossibili da risolvere!

Perciò la strisciolina di carta con le indicazioni di posa usiamola per fare un segnalibro, un aereo di carta, uno stoppino da sparare con la cerbottana, per sputarci la gomma da masticare, pur che NON venga letta in cantiere!

Mauro è quasi deciso per un intervento migliorativo del suo tetto in pannelli termoisolanti ventilati che funziona male d’estate ed è poco soddisfacente in inverno: vuole inserire sul lato interno un forte spessore di fibra di legno ad alta densità (probabilmente pareggiando lo spessore interno delle travi).

Questa soluzione è senza dubbio la vera soluzione al problema del surriscaldamento del tetto  (e d’inverno il pacchetto sarà da classe A), ma se 10 anni prima, durante il cantiere non si era progettata la tenuta all’aria, ora è indispensabile prevedere un freno al vapore che con le sue corrette nastrature garantisca agli ambienti riscaldati una sicura tenuta: ricordiamoci che in periodo di riscaldamento l’ambiente interno diventa una pentola a pressione e il vapore contenuto in casa tenderà ad uscire attraverso tutti i difetti di tenuta: se per una costruzione di laterizio e cemento non è letale, per una struttura in legno la presenza di condense interstiziali è letale.

La membrana quindi farà da tenuta all’aria e contemporaneamente gestirà il vapore:

  • il vapore deve asciugare in fretta d’estate uscendo dal pacchetto verso l’ambiente interno
  • il vapore dovrà essere fortemente frenato nella stagione di riscaldamento quando la spinta viene dall’interno

Circa le prestazioni del tetto rifatto sul lato interno, non ci sono dubbi, tutti valori ottimi rispetto allo stato di fatto. Ecco la stratigrafia:

Descrizione degli strati Spessore (s) [m] Conduttività termica (l) [W/mK] Resistenza termica [mqK/W] Calore specifico (c) [J/kgK] Densità (?) [kg/m3]
Rsi Aria Strato laminare interno 1 2 3 4
1 Cartongesso 0,0125 0,250 1000 900
2 fibra legno interposti10% 0,200 0,046 2436 160
3 Assito 0,020 0,130 2100 600
4 xps 0,030 0,035 1450 33
5 EPS Neopor® Tipo 150 0,050 0,031 1500 15
6 ventilazione

NB: manca lo strato della membrana a protezione della fibra di legno.

1   2   3   4  
  Assito 2,00   Cartongesso 1,25   Fibrogesso fermacell 1,25   perlina 1,50
  xps 3,00   fibra legno interposti10% 20,00   fibra legno interposti10% 20,00   fibra legno interposti10% 20,00
  EPS Neopor® Tipo 150 5,00   Assito 2,00   Assito 2,00   Assito 2,00
  ventilazione     xps 3,00   xps 3,00   xps 3,00
        EPS Neopor® Tipo 150 5,00   EPS Neopor® Tipo 150 5,00   EPS Neopor® Tipo 150 5,00
        ventilazione     ventilazione     ventilazione  
                       
                       
                       
                       
                       
                       
                       
                       
                       
  spessore cm. 10   spessore cm. 31,25   spessore cm. 31,25   spessore cm. 31,5
        spessore aggiunto cm. 21,25   spessore aggiunto cm. 21,25   spessore aggiunto cm. 21,5

e queste sono le prestazioni:

  • sfasamento oltre le 16 ore
  • Trasmittanza   U  0,14 W/m2K

Solo la capacità termica periodica del lato interno (per evitare il surriscaldamento estivo, meglio alti valori di capacità di assorbire calore sul lato interno) è un po’ scarsa, specialmente per il rivestimento interno in cartongesso. Ma dobbiamo ricordare che ora il pacchetto non è più surriscaldato dall’ambiente esterno come prima.

Regola del buon vicinato: se vedi fare un tetto sbagliato spara un colpo in aria!


lettura senza banner pubblicitari grazie alla generosità dei lettori – dona anche Tu 😉 sostieni l’informazione attraverso espertocasaclima.com!


federico_sampaoli_espertocasaclimacom  ipha_member

articolo ideato, scritto e diretto da Federico Sampaoli, impegnato a favore delle persone, del comfort e dell’open information, titolare e caporedattore di espertoCasaClima – blog di informazione e comunicazione

Il mio profilo LinkedIn

Entra anche Tu nella lista dei sostenitori del Blog espertoCasaClima :

Visita il profilo di federico su Pinterest.

Platea per casa in x-lam a Ravenna

Leggi questo articolo grazie alle donazioni dei lettori Alessandro Boiani, Valter Costantini, Annalisa Venturi, Marco O. e Massimo Sottocornola. Partecipa anche Tu, sostieni l’informazione attraverso espertocasaclima.com!


Riccardo racconta

Stiamo costruendo casa in xlam a Ravenna e in questo momento siamo in fase di progetto trovandoci a valutare un radiante a pavimento, soluzione che sembra valida sia in termini di comfort, che di dinamicità, che di consumi. Sarebbe interessante un approfondimento sul tipo di solaio contro terra ideale per questo tipo di impianto, con particolare riferimento alla platea calda o fredda, già trattata in un altro articolo, per fare chiarezza sul rapporto che c’è tra inerzia del sottofondo e inerzia dell’impianto.

Ho risposto a Riccardo che se guardiamo la stratigrafia del solaio dobbiamo sempre ricordare che immediatamente sotto al radiante è obbligatorio uno strato isolante che meglio si comporta se ha doti di anti calpestio. Perciò l’inerzia, tutto sommato, è riferita a quel che sta sopra l’impianto. La platea calda, per una costruzione in x-lam, è la perfetta soluzione termica e anche come distacco dal terreno e dall’umidità.

Riccardo torna a scrivere:

Mi chiedevo però se, al di là dei benefici in quanto a ponti termici e risalite di umidità, i vantaggi della platea calda in fatto di aumento di massa interna fossero apprezzabili anche in un clima caldo e umido come il nostro o se addirittura non fosse sconsigliata al fine di favorire lo scambio termico con il terreno. Grazie ancora.

Partendo dalla fine… devo dire che, purtroppo, favorire lo scambio termico col terreno equivale a favorire le dispersioni verso il basso e dunque la soluzione non è applicabile per un edificio a basso consumo!

Anch’io mi sono arrovellato su questo punto sognando di ottenere una riserva del freddo da utilizzare in periodo estivo – e infatti in gioventù professionale pubblicai questo articolo: Platea calda, fredda o tiepida?

proviamo ora a spaccare il capello in 4:

un solaio verso terreno con trasmittanza U di circa 0,20W/mqK che prevede gli strati di isolamento all’estradosso + un radiante sottile con una piastrella in cotto da 2cm di spessore offre

  • una Capacità termica periodica del lato interno (capacità areica interna) di ben 50 kJ/m2K.

e lei ha ben compreso che per evitare il surriscaldamento estivo sono da preferire alti valori di capacità di assorbire calore sul lato interno!

Questa stratigrafia, sopra la platea, presenterebbe questi strati:
Descrizione degli strati Spessore (s) [m] Conduttività termica (l) [W/mK]
Rsi Aria Strato laminare interno 1
1 Piastrella cotto 0,020 1,300
2 collante x piastrella 0,003 0,510
3 radiante sottile 0,015 0,320
4 fibra di gesso 0,010 0,320
5 fibra di legno 0,020 0,046
6 alleggerito 0,150 0,180
7 xps 0,100 0,035

Ora invertiamo la stratigrafia e mettiamo sotto al solaio (intradosso solaio) l’isolamento per sottofondazione separando terreno da platea ottengo una platea calda (che sarà interna all’involucro edilizio):

lo strato di isolamento sottofondazione prevede sopra il magrone l’XPS, poi la platea e gli altri strati. Per affrontare correttamente questo esperimento ci dimenticheremo dello strato alleggerito che è quello strato dove solitamente si affogano gli impianti e che per sua costituzione è anch’esso un isolante (non molto spinto, ma isolante).

Quindi XPS sotto, platea sopra e poi questi strati:

Descrizione degli strati Spessore (s) [m] Conduttività termica (l) [W/mK]
Rsi Aria Strato laminare interno 1
1 Piastrella cotto 0,020 1,300
2 collante x piastrella 0,003 0,510
3 radiante sottile 0,015 0,320
4 fibra di gesso 0,010 0,320
5 fibra di legno 0,020 0,046 
  1. abbiamo mantenuto una trasmittanza U di circa 0,20W/mqK adeguando lo spessore di XPS sotto platea,
  2. abbiamo tolto l’alleggerito
  3. e abbiamo mantenuto il radiante sottile con la piastrella in cotto da 2cm di spessore!

E’ rimasto lo strato in fibra di legno a dividerci dalla massa del solaio:

  • infatti la Capacità termica periodica del lato interno (capacità areica interna) è rimasta quasi invariata.

Naturalmente se togliessimo lo strato di fibra di legno ad alta densità questo valore finalmente si innalzerebbe.
Dobbiamo ricordare sempre che sono i primi centimetri di una stratigrafia a fare la vera differenza nei numeri e negli effetti sul comfort (i centimetri che ci circondano  in questo caso).

Quindi da dove deriva questo ottimo valore di Capacità termica periodica del lato interno (capacità areica interna) di ben 50 kJ/m2K ?

  • deriva proprio dallo spessore della piastrella in cotto in questo caso! se infatti si posasse una piastrella sottile 10mm il  valore di Capacità termica periodica del lato interno (capacità areica interna) scenderebbe verso i 40 kJ/m2K

Eh sì, la massa superficiale conta sempre molto!

            

lettura senza banner pubblicitari grazie alla generosità dei lettori – dona anche Tu!

+ involucro - impianti copyright

federico_sampaoli_espertocasaclimacom  ipha_member   articolo ideato, scritto e diretto da Federico Sampaoli, impegnato a favore delle persone, del comfort e dell’open information, titolare e caporedattore di espertocasaclima.com – blog di formazione e comunicazione online dal 2009.

Se vuoi conoscere il mio profilo LinkedIn

Entra anche Tu nella lista dei sostenitori del Blog espertoCasaClima :

Visita il profilo di federico su Pinterest.

XPS è sostenibile e arriva dove isolanti naturali non possono

Più ci si avvicina ai materiali isolanti naturali scoprendo le vere attitudini ad una prestazione estiva ottimale e più ci si allontana dai materiali isolanti derivati dal petrolio che sono sempre fortissimi in campo conducibilità termica ma questo non è che l’indicatore di grande capacità a contenere le dispersioni invernali e null’altro.

E il super prestazionale pannello in XPS è da buttare?

  • è tra i materiali isolanti più prestazionali  in assoluto! con un valore di conducibilità termica tra i più bassi

  • l’ XPS è adatto all’isolamento termico di tutte le strutture particolarmente sollecitate dove è richiesta un’elevata resistenza meccanica e all’acqua

  • infatti è perfetto in presenza di umidità ed è sempre consigliabile verso terreno (fondazioni) o come zoccolatura di sistemi termoisolanti a cappotto.

Visto che l’XPS si può utilizzare dove i materiali naturali non possono essere applicati e contribuisce alla riduzione dei consumi energetici, allora si deve anche ammettere, parlando di sostenibilità, che anche un derivato del petrolio può essere sostenibile.

Se l’energia e le emissioni di CO2 per la produzione dell’xps sono più che compensate dall’energia e dalle emissioni risparmiate nell’utilizzo dell’edificio isolato anche nei punti più difficili, pensate alle dispersioni verso il terreno, allora bisogna promuovere un materiale come l’XPS (tra l’altro riciclabile al 100% anche durante il processo produttivo stesso).

Volete leggervi la dichiarazione di sostenibilità (EPD) redatta da Exiba?

Dal 2015 i pannelli in XPS con caratteristiche di autoestinguenza non contengono più il ritardante di fiamma HBCD (esabromociclododecano) nella schiuma isolante e sono prodotti in euroclasse E in base alla EN 13501-1.

L’XPS resta un materiale plastico combustibile, ma opportunamente addittivato risulta non facilmente infiammabile.

e l’ effetto serra non ci preoccupa?

l’XPS usa come gas di espansione nel processo industriale la CO2 (il minor effetto serra possibile).

            

lettura senza banner pubblicitari grazie alla generosità dei lettori – dona anche Tu!

+ involucro - impianti copyright

federico_sampaoli_espertocasaclimacom  ipha_member   articolo ideato, scritto e diretto da Federico Sampaoli, impegnato a favore delle persone, del comfort e dell’open information, titolare e caporedattore di espertocasaclima.com – blog di formazione e comunicazione online dal 2009.

Se vuoi conoscere il mio profilo LinkedIn

Entra anche Tu nella lista dei sostenitori del Blog espertoCasaClima :

Visita il profilo di federico su Pinterest.

Mi può chiarire questo dubbio? Ci sono EPS ed EPS?

Il tetto rovescio di Mario vuole un chiarimento:

Buon giorno, avrei una domanda tecnica. Da quello che ho letto, anche sul suo intertessante sito, l’XPS va bene a contatto con l’acqua mentre l’EPS no. Avendo in mente di fare un tetto rovescio, mi hanno proposto un pannello ISOFLOOR in EPS con finitura prefabbricata a pavimento (in pratica su una faccia c’è già attaccato il pavimento). 

ISOFLOOR e’ un pannello termoisolante costituito da un elemento in Polistirene Espanso Sinterizzato (EPS) a celle chiuse, conforme alla Norma UNI EN 13163, Euroclasse E di Reazione al Fuoco, con finitura prefabbricata a pavimento. Il pannello presenta una conformazione dimensionale di facile applicazione e grazie all’insensibilita’ alla umidita’ dell’EPS, ai battenti perimetrali di sovrapposizione che garantiscono l’eliminazione di ponti termici ed alle scanalature inferiori, si ottiene un isolamento termico molto efficace evitando ristagni di acqua al di sotto dei pannelli a contatto con il manto di impermeabilizzazione.

 Mi può chiarire questo dubbio? Ci sono EPS ed EPS?

               Grazie, Mario

isofloor eps

Ci sono EPS ed EPS:

anche per la zoccolatura di sistemi a cappotto certificati sono previsti pannelli che non sono in xps:

si tratta di materiale isolante in polistirene espanso (EPS) costituito da schiuma dura stampata, idrofobizzata, prodotta attraverso trattamento termico di un granulato espandibile in polistirene: così è garantita l’insensibilità all’umidità.

 Probabilmente i quadrotti ISOFLOOR in Polistirene Espanso Sinterizzato (EPS) a celle chiuse con finitura prefabbricata a pavimento contano anche molto sulla presenza delle scanalature inferiori che devono riuscire a smaltire la presenza di acqua sul manto impermeabile destinato alla posa.

lettura senza banner pubblicitari grazie alla generosità dei lettori – dona anche Tu!

+ involucro - impianti copyright

federico_sampaoli_espertocasaclimacom  ipha_member   articolo ideato, scritto e diretto da Federico Sampaoli, impegnato a favore delle persone, del comfort e dell’open information, titolare e caporedattore di espertocasaclima.com – blog di formazione e comunicazione online dal 2009.

Se vuoi conoscere il mio profilo LinkedIn

Entra anche Tu nella lista dei sostenitori del Blog espertoCasaClima :


Visita il profilo di federico su Pinterest.

Difficile risolvere il ponte termico del balcone

Se tutti i ponti termici vengono affrontati solo nella fase esecutiva, l’unica soluzione migliorativa è preparare i dettagli costruttivi e migliorare lo stato di fatto:

Ponte termico balcone

  1. Laterizio (rosa) spess. 25 cm + intonaco 1.5 cm
  2. Solaio in calcestruzzo armato spess. 20 cm
  3. Alleggerito (verde) spess. 8 cm
  4. Caldana (grigio) spess. 5 cm
  5. Piastrella (nero) spess. 1 cm

I ponti termici sono le parti dell’ edificio dove il flusso di calore cambia: il materiale edilizio è disomogeneo, e disperde più calore. Sono elementi complicati da isolare termicamente e sono detti ponti termici costruttivi:

  • l’attacco dei balconi
  • l’attacco tra la parete e il pavimento
  • l’attacco tra la parete ed il tetto
  • l’attacco dei serramenti sui quattro lati
  • i pilastri che interrompono l’omogeneità delle pareti esterne

I ponti termici sono causa di maggiore dispersione termica e causa principale dell’insorgere della muffa.

Se volete monitorare personalmente le temperature delle superfici più fredde in casa avete solo bisogno di un termometro senza contatto. Ce ne sono di tanti modelli e costano veramente poco:

Costruire edifici senza ponti termici non solo fa risparmiare energia, ma rende anche più confortevoli e salubri le abitazioni e protegge la struttura edilizia dal degrado.

Analizziamo il ponte termico disegnato sopra: è certezza diffusa che la posa del cappotto sulle pareti esterne porti anche un miglioramento per quel che riguarda il ponte termico:

 Si tratta di un balcone di 3 metri di lunghezza:

  • in fase progettuale, e durante la costruzione il ponte termico è stato completamente ignorato
  • il coefficiente lineico di dispersione termica del ponte termico “psi” vale esattamente 0,62 W/(mK)
balcone con isolamento termico
  • dopo la posa dell’isolamento termico (8 cm. di eps, indicato in blu) anche l’aggetto del balcone è stato curato e all’intradosso sono stati posati sempre 8 cm di xps, mentre in testa e sul lato superiore all’estradosso solo 5 cm. (anche per motivi di ingombro)
  • il coefficiente lineico di dispersione termica del ponte termico “psi” vale adesso 0,29 W/(mK), meno della metà
  • la dispersione attraverso il ponte termico è diminuita sensibilmente, il ponte termico è rimasto ma è attenuato
Sicuramente abbiamo risolto il problema della bassa temperatura superficiale interna e il rischio muffa non esiste più, ma la dispersione termica continua, tutti gli inverni per tutti gli anni a venire.
Calcolare i ponti termici non è uno spreco di tempo o un eccesso di zelo: fa parte del progettare bene.

lettura senza banner pubblicitari grazie alla generosità dei lettori – dona anche Tu 😉  e sostieni l’informazione attraverso espertocasaclima.com!


marco-de-pinto-termotecnico  marco de pinto passivhaus planer   federico_sampaoli_espertocasaclimacom   ipha_member   

articolo ideato, scritto e diretto da Marco De Pinto e Federico Sampaoli, impegnati a favore delle persone, del comfort e dell’open information. Marco titolare dello Studio di progettazione degli impianti PH Studio.  Federico titolare dello Studio di consulenza tecnica per una migliore efficienza energetica e caporedattore di espertocasaclima.com – blog di formazione e comunicazione online dal 2009. 

Se vuoi conoscere i profili LinkedIn di Marco e LinkedIn di Federico …

Entra anche Tu nella lista dei sostenitori del Blog espertoCasaClima :

Visita il profilo di Federico su Pinterest.

Vespaio aerato, platea calda, dubbi e consigli

 Il senso del vespaio aerato qual’è?  interrompere la risalita dell’umidità, disperdere il gas Radon eventualmente presente, e spesso la tradizione, credo.

Personalmente preferirei una platea calda, coibentata all’intradosso (isolata da sotto) e un telo impermeabile sotto di essa.

tag-platea-calda

Verrebbe da pensare che se d’inverno sopportassi le dispersioni verso il basso (anche economicamente) della platea fredda potrei forse ripagarmi durante l’estate…

Quando gli ambienti interni iniziano a superare i 28° il clima si fa insopportabile e il calore è difficilmente smaltibile. Su questo tema potete leggere questo articolo: Platea Calda, fredda o tiepida?.

Se abbiamo deciso di costruire un vespaio aerato succederà che

  • in inverno l’aria esterna fredda (e povera di umidità) passa nel vespaio riscaldandosi e per l’effetto camino fuoriesce portando con sè eventuale umidità presente nel vespaio.
  • in estate l’aria fresca resta un po’ stagnante nel vespaio (e relativamente più secca) perchè non tende a salire.
  • in entrambe le stagioni la differenza di temperatura tra interno ed esterno può essere ben sfruttata da una pompa di calore (parlatene con un termotecnico).

Non facciamo l’errore di progettare le bocchette di aerazione un po’ dappertutto, ma possibilmente a nord e a sud e con una certa differenza di altezza tra quelle basse a nord e quelle alte a sud: tiraggio garantito!

Quindi non posiamo le bocchette come nell’immagine: tutte alte uguali, tutte a est e a ovest più un paio a nord e a sud!

tag-vespaio-aerato


lettura senza banner pubblicitari grazie alla generosità dei lettori – dona anche Tu 😉 sostieni l’informazione attraverso espertocasaclima.com!


federico_sampaoli_espertocasaclimacom  ipha_member

articolo ideato, scritto e diretto da Federico Sampaoli, impegnato a favore delle persone, del comfort e dell’open information, titolare e caporedattore di espertoCasaClima – blog di informazione e comunicazione

Il mio profilo LinkedIn

Entra anche Tu nella lista dei sostenitori del Blog espertoCasaClima :

Visita il profilo di federico su Pinterest.

Tetto piano rovescio

Cosa si intende per tetto rovescio in edilizia? Non certo quello dell’immagine sottostante: tag-tetto-alla-rovescia

Il tetto alla rovescia posiziona la membrana impermeabilizzante sotto l’isolante. L’isolante adatto non deve assorbire acqua, quindi solitamente si tratta di XPS.

tag-tetto-rovescio

Il manto impermeabile posato sul massetto, con pendenza dell’1% almeno, verrà protetto dall’xps in lastre posate anche a secco e poi zavorrate. Insomma, nel tetto rovescio è solo l’isolante a subire gli sbalzi di temperatura, le azioni del gelo ecc. mentre al manto è chiesta solamente la funzione di impermeabilizzazione.

Indicazioni per il calcolo della trasmittanza U del tetto piano:

Lo strato di isolamento termico di un tetto rovescio meglio eseguirlo con una maggiorazione del 20% per poter raggiungere il coefficiente U di progetto. Quindi se il coefficiente U calcolato per un tetto rovescio con spessore isolante 20 cm è di 0.18 W/(m2 · K), lo strato termoisolante consigliabile deve essere maggiorato del 20%, quindi 24 cm.

Stratigrafia del tetto piano rovescio:

tetto-rovescio-stratigrafia

  1. cls o laterocemento
  2. impermeabilizzazione
  3. coibentazione insensibile all’acqua
  4. geotessuto o altro telo separatore
  5. ghiaia per protezione e zavorra

       

lettura senza banner pubblicitari grazie alla generosità dei lettori – dona anche Tu!

+ involucro - impianti copyright

federico_sampaoli_espertocasaclimacom  ipha_member   articolo ideato, scritto e diretto da Federico Sampaoli, impegnato a favore delle persone, del comfort e dell’open information, titolare e caporedattore di espertocasaclima.com – blog di formazione e comunicazione online dal 2009.

Se vuoi conoscere il mio profilo LinkedIn

Entra anche Tu nella lista dei sostenitori del Blog espertoCasaClima :

Visita il profilo di federico su Pinterest.

EPS e XPS. Dove sta la differenza?

 Un bel guaio quando l’applicatore stesso non conosce la differenza tra EPS e XPS. Pensando non ve ne sia alcuna, esegue l’intervento di isolamento a cappotto con EPS fino a terra, dalla testa ai piedi. Poi, qualche mese dopo l’intervento, si scopre che il cappotto “beve”.

…come dice mio figlio… << E adesso?>>

Adesso si taglia lo zoccolo e si guarda come è stato eseguito:casi-cappotto-eps-21

e si scopre che è EPS fino a terra, per di più incollato a “polpette” di colla (tanta aria che gira tra cappotto e muratura: il cappotto non può garantire le sue prestazioni!). A guardar bene si scopre anche che i pannelli stessi non sono ben accostati (ponte termico con il collante) casi-cappotto-eps-3casi-cappotto-eps

e che l’intercapedine d’aria “non richiesta” permette di infilare anche le dita,

casi-cappotto-eps-5

tanto è generosa!

Meglio rifare almeno la zoccolatura di questo cappotto.

Un controllo in cantiere durante la posa avrebbe potuto evitare tutti questi problemi. Anche un capitolato più particolareggiato poteva aiutare a percorrere la strada senza dubbi o malinterpretazioni della lavorazione da eseguire.

Ricordiamo che l’EPS è espanso mentre l’XPS è estruso. Qunidi l’XPS è una struttura a celle chiuse omogenea e stabile che non può assorbire acqua, normalmente di colore non bianco (quindi anche facile da riconoscere!), con alta resistenza alla compressione.

  

       

lettura senza banner pubblicitari grazie alla generosità dei lettori – dona anche Tu!

+ involucro - impianti copyright

federico_sampaoli_espertocasaclimacom  ipha_member   articolo ideato, scritto e diretto da Federico Sampaoli, impegnato a favore delle persone, del comfort e dell’open information, titolare e caporedattore di espertocasaclima.com – blog di formazione e comunicazione online dal 2009.

Se vuoi conoscere il mio profilo LinkedIn

Entra anche Tu nella lista dei sostenitori del Blog espertoCasaClima :

Visita il profilo di federico su Pinterest.