Tag Archives: trasmittanza

Veneziana integrata nella finestra e la posizione più efficiente

Sapete che le schermature solari devono proteggere una superficie vetrata, ed essere applicate in modo solidale con l’involucro edilizio (quindi non smontabili e rimontabili dall’utente come le mie arelle!) e non servono per i fori finestra esposti a nord.

Sapete anche che, in linea di principio, consiglio di evitare avvolgibili o antoni per poter concentrare sia l’investimento economico sia lo sforzo di una buona posa in un unico elemento: la finestra con ombreggiatura incorporata.

In questo modo ci si deve solamente occupare della posa del telaio fisso al foro finestra:

meno cose da fare = meno errori

eliminare-cassonetto-avvolgibile

Sì, il serramento diventa più caro se confrontato con uno normale, ma ne vale la pena.

Molti felici possessori di serramenti ad alte prestazioni con veneziana integrata mi chiedono consiglio sull’inclinazione delle lamelle in relazione alla prestazione Ug del vetrocamera (la trasmittanza del vetro Ug cambia a seconda dell’orientamento della veneziana?). Insomma, a parte il momento in cui servono a fare ombra, come bisognerebbe orientare la veneziana per ottenere il valore di trasmittanza migliore in assoluto?

Ci si può arrivare anche con la logica, senza esperimenti e calcoli, ma c’è chi ha fatto costose analisi: il Research Centre on Zero Emission Buildings (ZEB)!

Il Centro di ricerca ha investigato sulle conseguenze di 4 posizioni diverse della veneziana:

veneziana-integrata-finestra-posizione-ombreggiatura-efficiente

scoprendo questi valori:

veneziana-integrata-finestra-posizione-ombreggiatura-efficiente 3Conclusione: il valore di trasmittanza migliore in assoluto si può ottenere con la veneziana in oscuramento totale (lamelle verticali)!

a seguire:

  • lamelle della veneziana inclinate a 45°
  • lamelle della veneziana impacchettate in alto (vetro libero)
  • lamelle della veneziana orizzontali (la posizione meno efficiente)

Ora che abbiamo anche questa certezza, diamoci una regolata!

       

lettura senza banner pubblicitari grazie alla generosità dei lettori – dona anche Tu!

+ involucro - impianti copyright

federico_sampaoli_espertocasaclimacom  ipha_member   articolo ideato, scritto e diretto da Federico Sampaoli, impegnato a favore delle persone, del comfort e dell’open information, titolare e caporedattore di espertocasaclima.com – blog di formazione e comunicazione online dal 2009.

Se vuoi conoscere il mio profilo LinkedIn

Entra anche Tu nella lista dei sostenitori del Blog espertoCasaClima :

Visita il profilo di federico su Pinterest.

Per calcolare i parametri termici di una stratigrafia

Per calcolare i parametri termici di una stratigrafia, ma anche per conoscere solamente la trasmittanza e lo sfasamento termico dobbiamo inserire alcune caratteristiche del materiale che stiamo utilizzando, o che forse utilizzeremo.

calcolare-parametri-termici-stratigrafia-trasmittanza-calore-specifico-vapore-01

Ma questi parametri sono sempre descritti nelle schede tecniche?

E soprattutto, quali sono?

  • la conducibilità,
  • il calore specifico,
  • e aggiungerei anche il fattore di resistenza al passaggio del vapore (almeno possiamo calcolarci il valore Sd per capire come verrà gestita la migrazione del vapore).

calcolare-parametri-termici-stratigrafia-trasmittanza-calore-specifico-vapore-03

La maggior parte delle volte, il materiale che stiamo valutando riporta bene nella scheda tecnica le proprietà termofisiche che cerchiamo: questi dati infatti accompagnano la marcatura CE e dovranno essere poi opportunamente corretti per tenere conto delle reali condizioni in cui opereranno secondo UNI EN ISO 10456.

Altre volte manca il dato del calore specifico… Chi sa perchè.

Può capitare anche di reperire con difficoltà la densità del materiale (kg/mc), e senza questo dato non si può proseguire (questo vale spesso per le lane di vetro).

calcolare-parametri-termici-stratigrafia-trasmittanza-calore-specifico-vapore-02

E’ stata aggiornata anche la Norma UNI 10351 nel 2015: Materiali e prodotti per edilizia – Proprietà termoigrometriche – Procedura per la scelta dei valori di progetto. E’ in vigore dal 25 giugno 2015. La norma

  • fornisce il metodo per il reperimento dei valori di riferimento per conduttività termica, resistenza al passaggio del vapore e calore specifico dei materiali da costruzione in base all’epoca di installazione.
  • integra quanto non presente nella UNI EN ISO 10456 con particolare riferimento ai materiali isolanti per l’edilizia a seconda se siano o meno dotati di marcatura CE.

In conclusione, prima di metterci al lavoro e “dare i numeri” facciamo buona ricerca e troviamoci tutti i dati importanti ad eseguire i calcoli!

Io naturalmente faccio così, ed ogni volta che utilizzo un materiale vado ad aggiornare il mio “data base materiali” che piano piano è diventato lunghissimo (e utilissimo): si tratta di un semplice foglio di calcolo dove in cima alle colonne ho scritto i dati che mi servono..

nome materiale: Spessore (s) [m] Conduttività termica (l) [W/mK] Resistenza termica [mqK/W] Calore specifico (c) [J/kgK] Densità (?) [kg/m3] Permeabile al vapore ? Potere fonoisolante Rw dB

Se mi capita di avere fretta e non possiedo uno dei dati che sto cercando, scriverò in corsivo un numero “molto affidabile” che avrò copiato da un materiale gemello! E’ un modo per distinguere i dati “dichiarati” dal produttore dai dati “dedotti” con un po’ di logica.

Se fate spesso questo lavoro, consiglio caldamente di iniziare un data base materiali, che si arricchirà di settimana in settimana diventando un autorevole aiutante di studio. Nelle colonne libere di destra suggerisco di aggiungere il nome del cantiere perchè il nostro cervello abbina spesso un certo materiale ad un certo cantiere e le ricerche diventano semplici e veloci.

Se invece vi sentirete smarriti quando il data base materiali oltrepasserà le 1000 righe, come nel mio caso, oppure siete appena rientrati da un viaggio intorno al mondo e a stento ricordate il nome di quel tal cantiere dove avevate scelto di utilizzare quel tal pannello isolante, non vi resta che la scorciatoia di “cerca”: cmd f

calcolare-parametri-termici-stratigrafia-trasmittanza-calore-specifico-vapore

Cosa utilizzate per i vostri fogli di calcolo? ancooora Excel?

Lasciate perdere, spiccate il volo, migrate verso Calc, il foglio elettronico tuttofare che avete sempre desiderato, graaatis:

calcolare-parametri-termici-stratigrafia-trasmittanza-calore-specifico-vapore-4

 Salvate i vostri documenti nel formato OpenDocument, lo standard internazionale per i documenti di ufficio. Questo formato, basato su XML, è uno standard aperto: ciò significa che non siete legati a CALC. Potete aprire i vostri documenti con qualsiasi programma compatibile con OpenDocument.

Con CALC, inoltre, potete leggere tutti i vostri precedenti documenti Microsoft Excel (compresi quelli creati con Microsoft Excel 2007) e salvare il vostro lavoro nei formati Microsoft Excel per inviarli a chi è ancora legato ai prodotti Microsoft. Se essi desiderano solo vedere il risultato del vostro lavoro, usate piuttosto il formato PDF (Portable Document Format, .pdf) – non è necessario comprare altro software.

         

lettura senza banner pubblicitari grazie alla generosità dei lettori – dona anche Tu!

+ involucro - impianti copyright

federico_sampaoli_espertocasaclimacom  ipha_member   articolo ideato, scritto e diretto da Federico Sampaoli, impegnato a favore delle persone, del comfort e dell’open information, titolare e caporedattore di espertocasaclima.com – blog di formazione e comunicazione online dal 2009.

Se vuoi conoscere il mio profilo LinkedIn

Entra anche Tu nella lista dei sostenitori del Blog espertoCasaClima :

Visita il profilo di federico su Pinterest.

Demolizione e riscotruzione, platea calda o fondazione tradizionale?

La demolizione in favore di una ricostruzione è l’occasione per rivedere ogni aspetto progettuale. Non sono sempre e comunque favorevole alla demolizione, ma di fronte a murature in mattone pieno bagnate e fondazioni inesistenti, inutile sforzarsi troppo e affrontare un cantiere con grosse incognite di spesa e interventi forse risolutivi e forse no.

Ricostruiamo, con 2383 Gradi Giorno siamo in zona climatica E:

demolizione-riscotruzione-platea-calda-fondazione-isolamento-terreno-tradizionale-02

essendo in vigore il DM 26.6.2015 già dal 1° ottobre scorso dobbiamo per forza riferirci ai nuovi limiti di trasmittanza previsti quando ragioniamo sul solaio verso terra.

demolizione-riscotruzione-platea-calda-fondazione-isolamento-terreno-tradizionale-01

Per contenere le dispersioni verso il basso dobbiamo garantire una trasmittanza U inferiore a 0,30 W/mqK

Naturalmente sarebbe possibile partire con la fondazione, e solo successivamente posare lo strato di coibentazione idoneo. In progetto era infatti la realizzazione di un getto armato su igloo.

Ma perchè non cambiare radicalmente strategia e progettare una platea di fondazione poggiante sull’isolante? Ottenere una platea calda quali aspetti positivi porta all’edificio in riscostruzione? Molteplici, ma ne voglio evidenziare alcuni:

  • solaio verso terra già isolato termicamente (una massa enorme di circa 800 kg /mq a temperatura quasi ambiente)
  • solaio verso terra distaccato dal terreno che allontana il rischio di umidità di risalita
  • piede della muratura caldo con conseguente ponte termico già attenuato
  • passaggi impiantistici affogati nello spessore alleggerito con temperature molto stabili
  • poco sbancamento del terreno

I nuovi limiti di trasmittanza impongono a questa scelta costruttiva enormi spessori di coibentazione? Di fatto no. Sono sempre favorevole a forti spessori di isolamento termico – non vedo intelligenza nel rispettare unicamente i limiti imposti dal legislatore – meglio far meglio. Ma torniamo al punto: il solaio verso terra avrà in sostanza due (si potrebbe dire 3) strati dedicati alla coibentazione:

  1. il pannello isolante sottofondazione che verrà sistemato sopra al magrone armato sopra lo stabilizzato di base
  2. il getto in calcestruzzo cellulare leggero o sottofondo alleggerito termoisolante premiscelato che equivale allo spessore necessario agli impianti e alle loro pendenze
  3. l’eventuale spessore dedicato all’anticalpestio che permette al massetto di finitura di essere galleggiante, quindi desolarizzato.

Se tutti gli altri strati sono molto conducenti e dispersivi, questi 3 strati sono quelli che permettono alla stratigrafia di fondazione di rispettare i limiti di trasmittanza termica.

Vediamoli tutti insieme in stratigrafia:

Descrizione degli strati Spessore (s) [m] Conduttività termica (l) [W/mK] Resistenza termica [mqK/W] Calore specifico (c) [J/kgK] Densità (?) [kg/m3]
Rsi Aria Strato laminare interno 1 2 3 4
1 Piastrella 0,010 1,300 840 2300
2 collante x piastrella 0,003 0,510   1111 1700
3 massetto 0,050 1,600 1000 2300
4 anticalpestio 0,010 0,037 1400 30
5 alleggerito 0,100 0,098 1000 400
6 cls armato 0,250 2,500 880 2400
7 foglio in PE polietilene 0,002 0,040   1400 92
8 isolante 0,080 0,035 1450 35
9 magrone armato
10 stabilizzato di base

Guardando lo strato n.8, il primo strato isolante che incontriamo partendo dall’esterno, sembra che già 8cm siano sufficienti a mettere in regola il pacchetto verso terra: si tratta di un pannello battentato sui 4 lati in schiuma in polistirene espanso estruso XPS esente da HCFC, HFA e HFC che offre resistenza alla compressione a lungo termine > 250 kPa.

demolizione-riscotruzione-platea-calda-fondazione-isolamento-terreno-tradizionale-03

L’intera stratigrafia, inserendo i valori di lambda Dichiarato, garantisce dispersioni termiche verso il basso pari a soli 0,254 W/mqK

Trasmittanza   U [W/m2K] 0,254

Tutti sanno che il terreno offre una enorme inerzia e avere il terreno come strato più esterno è una garanzia maggiore contro gli sbalzi termici e le rigide temperature invernali di alcune settimane dell’anno. Possiamo dire che la platea di fondazione gode di un clima ben più favorevole rispetto alla copertura o alle pareti esterne – la platea è più protetta.

Il flusso termico è naturalmente discendente e posso applicare il “fattore correzione terreno” pari a 0,45: dunque il valore di trasmittanza U * 0,45.

Nel calcolo inserirò come Resistenza termica esterna il valore zero:

Resistenza termica sup esterna Rse     [m2K/W] 0,00

 Avrei affrontato un costo minore se avessi posato gli igloo e avessi previsto una fondazione di forma diversa? Avrei un edificio con prestazioni termiche migliorate? Non credo proprio.

   

       

lettura senza banner pubblicitari grazie alla generosità dei lettori – dona anche Tu!

+ involucro - impianti copyright

federico_sampaoli_espertocasaclimacom  ipha_member   articolo ideato, scritto e diretto da Federico Sampaoli, impegnato a favore delle persone, del comfort e dell’open information, titolare e caporedattore di espertocasaclima.com – blog di formazione e comunicazione online dal 2009.

Se vuoi conoscere il mio profilo LinkedIn

Entra anche Tu nella lista dei sostenitori del Blog espertoCasaClima :

Visita il profilo di federico su Pinterest.

Nuovi limiti di legge sulla trasmittanza termica Uw della finestra e sul fattore g del vetro

Ci sono nuovi limiti di legge sulla trasmittanza termica Uw della finestra e anche sul fattore g del vetro! Tutto in vigore dal 1° ottobre 2015.

Sul Supplemento Ordinario n. 39 alla Gazzetta Ufficiale n. 162 del 15 luglio 2015, è stato pubblicato il D.M. 26 giugno 2015 in cui si legge di “Applicazione delle metodologie di calcolo delle prestazioni energetiche e definizione delle prescrizioni e dei requisiti minimi degli edifici”. Il Decreto Ministeriale stabilisce i nuovi limiti energetici che devono essere applicati per legge all’involucro edilizio.

Per il serramento vengono posti nuovi limiti

  • sia alla dispersione del calore invernale (trasmittanza termica Uw ulteriormente ridotta rispetto ai limiti imposti dal decreto 311/2006 + trasmittanza termica Usb del cassonetto)
  • sia all’ingresso del calore estivo dovuto all’irraggiamento solare diretto (un valore massimo per il Fattore Solare Globale g gl+sh (che definisce il rapporto tra l’energia solare incidente sul serramento e quella che entra in casa) e deve essere inferiore o uguale al 35% per le finestre esposte a Sud Est Ovest).

Dal 1° ottobre 2015 il serramento corretto rispetta i valori imposti dalla legge

  • valore Uw + valore Usb (finestra + cassonetto)
  • Fattore di Trasmissione Solare Totale – g gl+sh.

Conoscere il valore di trasmittanza è abbastanza facile, solitamente lo troviamo già indicato nell’offerta!

Più complicato invece conoscere e scegliere la corretta vetrata isolante in funzione dei valori Ug (trasmittanza termica) – g (fattore solare) – TL (trasmissione luminosa) – Ra (resa cromatica) e Ri (riflessione interna)

Bisogna imparare a leggere la scheda tecnica della vetrata isolante e riconoscere i valori ottico-energetici-luminosi per verificare l’adeguatezza del prodotto scelto rispetto alle esigenze del progetto.

Il serramentista si occuperà di

  • certificare il valore di Usb del proprio cassonetto
  • calcolare il Fattore Solare Globale g gl+sh e il g tot con l’utilizzo di un software accreditato

allegando la dichiarazione alla fattura.

nuovi-limiti-trasmittanza-termica-uw-finestra-fattore-g-vetro-01

Già prima dell’entrata in vigore del nuovo DM 26.6.2015 sono sempre stato contrario a proporre l’avvolgibile per ombreggiare un serramento, per vari motivi:

  • l’installazione di un cassonetto per avvolgibile è sempre fonte di problemi, noie e perdite di tempo in cantiere
  • un cassonetto per avvolgibile è un costo che si somma a quello già elevato del serramento
  • il cassonetto per avvolgibile è spesso critico dal punto di vista tenuta all’aria e prestazione acustica
  • l’avvolgibile non è in grado di gestire ottimamente la quantità di luce necessaria all’ambiente

nuovi-limiti-trasmittanza-termica-uw-finestra-fattore-g-vetro-03

Una veneziana applicata nell’intercapedine del vetro (nel caso di un triplo vetro) risolve i problemi di legge ed offre un controllo della luce perfetto.

nuovi-limiti-trasmittanza-termica-uw-finestra-fattore-g-vetro-02

E’ un aspetto importantissimo per edifici ben isolati e con generose vetrate esposte all’irraggiamento: ombreggiare sarà necessario anche in alcune ore del giorno del periodo invernale e non si può essere costretti al buio per impedire un surriscaldamento troppo veloce.


lettura senza banner pubblicitari grazie alla generosità dei lettori – dona anche Tu!

+ involucro - impianti copyright

federico_sampaoli_espertocasaclimacom  ipha_member   articolo ideato, scritto e diretto da Federico Sampaoli, impegnato a favore delle persone, del comfort e dell’open information, titolare e caporedattore di espertocasaclima.com – blog di formazione e comunicazione online dal 2009.

Se vuoi conoscere il mio profilo LinkedIn

Entra anche Tu nella lista dei sostenitori del Blog espertoCasaClima :


Visita il profilo di federico su Pinterest.

Eliminare il cassonetto dell’avvolgibile

Se mi viene chiesto un consiglio, io lo do – eliminiamo subito il cassonetto degli avvolgibili.

eliminare-cassonetto-avvolgibile

I cassonetti sono una grande fonte di problemi di natura termica, di natura acustica e di tenuta all’aria, e con l’arrivo del nuovo DM del 26.6.2015, in vigore dal 1° ottobre, il valore di trasmittanza da rispettare è finestra comprensiva di cassonetto. Diventa obbligatorio occuparsi di serramenti e di cassonetti: insomma, se state raccogliendo vari preventivi per la sostituzione dei serramenti dovete pensare subito anche a tutti i cassonetti!

La trasmittanza termica del cassonetto (Usb) viene determinata tramite calcolo secondo la norma UNI EN ISO 10077-2. A dirla tutta si dovrebbe calcolare il ponte termico tra finestra e cassonetto.

Il valore complessivo di finestra e cassonetto (U) può essere determinato con il calcolo della media ponderata considerando le superfici e i valori U di finestre e cassonetti.

In ogni caso il valore complessivo di trasmittanza segue la zona climatica di appartenenza come in tabella qui sotto riportata:

eliminare-cassonetto-avvolgibile-01

Ecco perchè io investirei tutti gli sforzi economici e di migliore posa esclusivamente sul serramento, che potrebbe anche essere dotato di ombreggiatura. Se odiate le righe dei frangisole potete ripiegare sui vecchi buoni antoni:

eliminare-cassonetto-avvolgibile-02Semplificare per riqualificare è meglio che complicare


lettura senza banner pubblicitari grazie alla generosità dei lettori – dona anche Tu!

+ involucro - impianti copyright

federico_sampaoli_espertocasaclimacom  ipha_member   articolo ideato, scritto e diretto da Federico Sampaoli, impegnato a favore delle persone, del comfort e dell’open information, titolare e caporedattore di espertocasaclima.com – blog di formazione e comunicazione online dal 2009.

Se vuoi conoscere il mio profilo LinkedIn

Entra anche Tu nella lista dei sostenitori del Blog espertoCasaClima :


Visita il profilo di federico su Pinterest.

La casa nel clima italiano di che isolamento ha bisogno?

Seguendo l’Europa finalmente anche l’ Italia ha conosciuto l’isolamento termico degli edifici – ci siamo appena abituati a prevedere il cappotto che già ci troviamo alla vigilia del costruire edifici nuovi a consumo netto quasi nullo. L’ Italia sembra in ritardo, e appare svantaggiata, invece io vedo in questa lentezza l’occasione italiana di fare meglio di tutti gli altri.

casa-clima-italiano-isolamento

E’ una fortuna che oltre il 90% delle nostre case sia ancora da isolare!

Pensate se tutti gli edifici avessero già quello standard dei primi cappotti posati in Italia dopo il 2005: 4-6cm di EPS bianco, spesso senza rispettare un sistema certificato.

casa-clima-italiano-isolamento

Con le temperature estive sempre più insopportabili in quasi tutte le città italiane, il sottile cappottino in EPS può fare ben poco e il beneficio del costoso intervento resta limitato al periodo invernale.

Progettare senza considerare gli effetti del surriscaldamento è sempre un errore, almeno in Italia. La protezione estiva resta spesso sottovalutata, si dovrebbe progettare solamente in luglio e agosto in uffici non climatizzati! 

casa-clima-italiano-isolamento

In gergo tecnico si parla di gestire i carichi interni durante l’estate:  isolare non è mai sbagliato, ma la progettazione dell’involucro non deve limitarsi a verificare la trasmittanza U che si ottiene, anche l’inerzia termica è importantissima – è qui che nasce il comfort abitativo – d’inverno perché la temperatura interna resta costante, d’estate perché l’energia di troppo prodotta dentro casa può essere ceduta alla massa interna (debitamente isolata esternamente) senza aver continuo bisogno di impianti di climatizzazione.

L’obiettivo della casa a consumo nullo soccorsa dal solare e dal fotovoltaico non è proprio l’ideale di casa! 

Prestare attenzione ai soli flussi entranti dall’esterno e dimenticando i carichi interni (noi che abitiamo, gli elettrodomestici che accendiamo, l’illuminazione ecc.), significa non fare gli interessi della committenza. E chi non pensa al committente non sta progettando bene.

casa-clima-italiano-isolamento

Non dobbiamo guardare unicamente al laterizio come metodo salvatore dei progetti in clima caldo, gli intonaci, le lastre in fibrogesso e i pannelli in argilla svolgono egregiamente e in modo passivo il ruolo di portatori di comfort termo-igrometrico. E’ proprio questo strato più interno della parete perimetrale a svolgere questo compito delicato: diffidate sempre delle soluzioni svelte ed economiche – cartongesso e pittura murale, soluzione povera in tutti i sensi.

casa-clima-italiano-isolamento

Capita spesso che il valore indicato dalla massa superficiale di una struttura tranquillizzi tutti sul fronte del comfort estivo: è bene ricordare che la massa superficiale “pesa” il metro quadro della struttura in tutti i suoi strati e non sottolinea quali strati siano quelli pesanti. Per fare un esempio, una parete “pesante” potrebbe ricevere uno strato leggero ed isolante sul lato interno (magari un foglio extra sottile termoriflettente) portando a grossi discomfort estivi gli ambienti. 

Quali dati si devono tenere in grande considerazione per combattere il surriscaldamento estivo?

Naturalmente la risposta è – ” tutti i dati risultanti dal calcolo di una stratigrafia sono importanti “, ma bisogna saperli leggere ed interpretare correttamente per capire come si comporterà l’edificio nelle stagioni.

In tanti articoli ho cercato di spiegare l’importanza del valore della Capacità termica periodica del lato interno detto anche Capacità areica interna. E’ un dato spesso nemmeno riportato nei documenti allegati alle stratigrafie, ma molto indicativo sulla qualità progettuale. Più il valore è basso e peggiore sarà il comportamento dell’edificio in periodo estivo. Consiglio di non accontentarsi mai di valori inferiori ai 30 kJ/m2K: per evitare il surriscaldamento estivo meglio alti valori di capacità termica areica interna (la capacità di assorbire calore internamente).


lettura senza banner pubblicitari grazie alla generosità dei lettori – dona anche Tu!

+ involucro - impianti copyright

federico_sampaoli_espertocasaclimacom  ipha_member   articolo ideato, scritto e diretto da Federico Sampaoli, impegnato a favore delle persone, del comfort e dell’open information, titolare e caporedattore di espertocasaclima.com – blog di formazione e comunicazione online dal 2009.

Se vuoi conoscere il mio profilo LinkedIn

Entra anche Tu nella lista dei sostenitori del Blog espertoCasaClima :

Visita il profilo di federico su Pinterest.

Tetto in Stiferite e Celenit, amici per forza

Il sottotetto diventerà abitabile? La mansarda lasciata al grezzo verrà finalmente completata? Tutte occasioni per rivedere la copertura e prevedere una coibentazione fino ad oggi completamente assente. Per decenni guaina bituminosa e tegole o coppi hanno protetto le falde dagli eventi meteorologici, ora è venuto il momento di pensare anche all’isolamento termo acustico.

Mi capita sempre più frequentemente di leggere stratigrafie che propongono Stiferite e Celenit, le più misere solo Stiferite. Si parte dalla guaina esistente, senza rimozione, e si prosegue con gli strati dei pannelli: sul lato caldo la Stiferite e sul lato freddo il Celenit N.

In genere questi progetti riguardano la zona climatica E, qui da noi Stiferite e Celenit sono molto diffusi:

tetto-stiferite-celenit-01

tetto-stiferite-celenit-02

La nuova stratigrafia della copertura all’estradosso solaio falda in latero cemento è di fatto un pacchetto non traspirante compreso tra due manti bituminosi, quello vecchio esistente e quello nuovo – quindi la migrazione del vapore attraverso le strutture avviene in un solo senso e nel solo periodo estivo, quando l’eventuale vapore contenuto nello spessore della struttura torna in ambiente asciugando le falde (è il comportamento tipico di un lastrico solare orizzontale impermeabilizzato e coibentato all’esterno).

Sappiamo che il limite di trasmittanza di una struttura inclinata in zona climatica E deve essere inferiore a 0,24 W/mqK e già con 10 cm di Stiferite Class B ci siamo:

ecco la stratigrafia:

Descrizione degli strati Spessore (s) [m] Conduttività termica (l) [W/mK] Resistenza termica [mqK/W] Calore specifico (c) [J/kgK] Densità (?) [kg/m3]
Rsi Aria Strato laminare interno 1 2 3 4
1 solaio latero cemento 0,2400 0,660 840 1100
2 impermeabilizz bitume 0,002 0,170 1000 1200
3 STIFERITE CLASS B 0,100 0,026 1453 44
4 impermeabilizz bitume 0,002 0,170 1000 1200

ecco il valore di trasmittanza, secondo la norma tecnica UNI EN ISO 6946 (U è infatti una proprietà termica stazionaria):

Trasmittanza   U [W/m2K] 0,229

Ma potrei consigliare di rivedere la copertura applicando questa stratigrafia? Il committente che affronta l’inverno avrà certamente grandi soddisfazioni e tutti gli ambienti del sottotetto avranno un comfort fino all’anno prima sconosciuto, oltre che una bolletta del riscaldamento inferiore. Ma cosa succederà l’estate dopo?

Con poco più di 8 ore di sfasamento, il surriscaldamento degli ambienti sarà molto probabile, infatti la prestazione energetica estiva è Media e la qualità prestazione estiva è di III livello ( questo secondo il Metodo dei parametri qualitativi secondo Linee Guida Nazionali sulla Certificazione Energetica degli Edifici).

Basterebbe aumentare lo spessore della Stiferite? Cosa mai costerà qualche cm in più. Facciamo i pionieri, stracciamo il progetto dei 10cm e scriviamo Stiferite Class B spessore 200. Sì 20cm di coibentazione. Se non ne bastano 20…

ecco la stratigrafia:

Descrizione degli strati Spessore (s) [m] Conduttività termica (l) [W/mK] Resistenza termica [mqK/W] Calore specifico (c) [J/kgK] Densità (?) [kg/m3]
Rsi Aria Strato laminare interno 1 2 3 4
1 solaio latero cemento 0,2400 0,660 840 1100
2 impermeabilizz bitume 0,002 0,170 1000 1200
3 STIFERITE CLASS B 0,200 0,025 1453 44
4 impermeabilizz bitume 0,002 0,170 1000 1200

ecco il valore di trasmittanza:

Trasmittanza   U [W/m2K] 0,117

Non male! Chi avrebbe mai pensato di avere un giorno sopra la testa un tetto da 0,11? Questa è la Rolls Royce delle coperture!

Invece no. La Stiferite isola tantissimo e lo spessore è fantastico ma le sue doti estive non sono fantastiche, un po’ il calore specifico bassino e un po’ la poca densità del materiale, questa copertura d’estate non sarà proprio una Rolls Royce: la prestazione energetica estiva è diventata Ottima e la qualità prestazione estiva è di I livello, ma ancora con tutto questo spessore il Fattore di decremento (attenuazione) cioè Udyn/U è solo sceso a 0,18 (la quantità di calore che attraversa una struttura viene ridotta d’intensità (attenuazione) ed è ottimo solo se inferiore a 0,15).

Fattore di decremento (attenuazione) fd [-] 0,180
Ritardo fattore di decremento (sfasamento) ? [h] 12,25
Trasmittanza termica periodica |Yie| [W/m2K] 0,021

E’ tutto inutile, qui ci vuole un po’ di Celenit N che è lana di legno di abete rosso mineralizzata e legata con cemento Portland, quindi non è esattamente un pannello di fibra di legno che è un materiale solo coibente. Anche il Celenit N coibenta, non tanto quanto, ma isola termicamente anche lui (diciamo un 30% meno) perché la sua conduttività è 0,065 W/mK.

Con l’aggiunta di un pannello Celenit N di 5cm a 10cm di Stiferite Class B la prestazione estiva della copertura è più o meno allo stesso livello:

Fattore di decremento (attenuazione) fd [-] 0,176
Ritardo fattore di decremento (sfasamento) ? [h] 12,58
Trasmittanza termica periodica |Yie| [W/m2K] 0,034

Con l’aggiunta di un pannello Celenit N di 7,5cm a 10cm di Stiferite Class B la prestazione estiva della copertura è veramente migliorata:

Fattore di decremento (attenuazione) fd [-] 0,114
Ritardo fattore di decremento (sfasamento) ? [h] 14,77
Trasmittanza termica periodica |Yie| [W/m2K] 0,021

ecco la stratigrafia con l’aggiunta del Celenit:

Descrizione degli strati Spessore (s) [m] Conduttività termica (l) [W/mK] Resistenza termica [mqK/W] Calore specifico (c) [J/kgK] Densità (?) [kg/m3]
Rsi Aria Strato laminare interno 1 2 3 4
1 solaio latero cemento 0,2400 0,660 840 1100
2 impermeabilizz bitume 0,002 0,170 1000 1200
3 STIFERITE CLASS B 0,100 0,026 1453 44
4 Celenit N 0,075 0,066 1810 400
5 impermeabilizz bitume 0,002 0,170 1000 1200

ed ecco la trasmittanza, che naturalmente non è 0,11:

Trasmittanza   U [W/m2K] 0,181

Ma perché dovrei preferire una trasmittanza peggiore in favore di prestazioni estive migliori? Secondo me perché l’impianto di riscaldamento è comunque presente, produce calore per compensare le dispersioni invernali e acqua calda secondo necessità. Ma rinunciare al raffrescamento è possibile solo se gli ambienti non si surriscaldano in fretta e quindi una protezione ottimale dal caldo in copertura può evitarci l’installazione di impianti per raffreddare la mansarda.

Il Celenit N viene in soccorso della Stiferite offrendo una densità 10 volte maggiore e un calore specifico più elevato: 1810 J/kgK. Inoltre il pannello Celenit è veramente resistente e quindi ottimale per calpestare la copertura durante i lavori e posare la nuova guaina a fiamma.

In questo articolo non ho parlato di tanti altri materiali per coibentazione dei tetti, ma voglio ricordare ai lettori che se si sta cercando di realizzare una copertura con fantastiche prestazioni estive la stratigrafia deve preferire l’uso della fibra di legno che offre un calore specifico ineguagliabilmente elevato: ben 2400 J/kgK. Inutile dire che di meglio non c’è.


 



lettura senza banner pubblicitari grazie alla generosità dei lettori – dona anche Tu!

+ involucro - impianti copyright

federico_sampaoli_espertocasaclimacom  ipha_member   articolo ideato, scritto e diretto da Federico Sampaoli, impegnato a favore delle persone, del comfort e dell’open information, titolare e caporedattore di espertocasaclima.com – blog di formazione e comunicazione online dal 2009.

Se vuoi conoscere il mio profilo LinkedIn

Entra anche Tu nella lista dei sostenitori del Blog espertoCasaClima :

Visita il profilo di federico su Pinterest.

Scegliere lo spessore della parete in x-lam per un buon comfort estivo

La casa in legno piace sempre di più e chi vuole costruire da zero spesso è maggiormente invogliato da un cantiere pulito, svelto, profumato e ordinato senza le lungaggini e gli imprevisti di una costruzione tradizionale.

costruire-in-legno

La domanda che ci si pone più spesso è << quale tipo di casa in legno devo costruire nel clima italiano per avere ottimo comfort estivo? >>. La maggior parte degli aspiranti proprietari di una nuova casa in legno si orienta direttamente in una costruzione con pareti in x-lam evitando di prendere in considerazione le case a telaio dove il legno è limitato alla sola struttura ed in definitiva si tratta di una costruzione in materiale isolante.

casa in legno massa interna

L’idea di una parete massiccia in x-lam a strati incrociati (strati ortogonali di tavole di abete), preferibilmente senza collanti e sostanze chimiche, rassicura molto i committenti sul buon comportamento estivo. Eppure si trovano spesso di fronte alla scelta dello spessore di tale parete – per non sbagliare stiamo nel mezzo: << facciamola da 20 cm., quasi 100 kg/mq >>.

In realtà la scelta di solito verte su 4 tipologie:

  • una parete massiccia in x-lam da 14,3 cm
  • una parete massiccia in x-lam da 20 cm
  • una parete massiccia in x-lam da 25,7 cm
  • una parete massiccia in x-lam da 31,4 cm

La parete non è tutta qui naturalmente! Ci sono almeno 4 strati da tenere in considerazione:

  1. l’intonaco esterno
  2. l’isolamento termico sul lato esterno
  3. la parete massiccia in x-lam
  4. il rivestimento interno

parete massiccia in x-lam

Il 2° strato è dedicato all’isolamento termico vero e proprio, quello che ha il compito di contenere le dispersioni nel periodo di riscaldamento (trasmittanza termica) e di attenuare la quantità di calore che vorrebbe entrare nel periodo estivo (fattore di attenuazione) e che entrerà con un certo ritardo (ore di sfasamento).

Tale compito è importantissimo ma se prendessimo questo valore come unico importante per ottenere ottimo comfort estivo prenderemmo un bel granchio! Il fattore di attenuazione e lo sfasamento ci raccontano solo quanto siamo protetti in estate dal clima esterno. Chi è il nemico in estate? il sole? solo lui? l’umidità asfissiante? il sole e l’umidità? In parte sì, sono loro i nemici del comfort. Ma in parte siamo noi il nemico insospettabile.

Perchè dico questo? Posso progettare la migliore stratigrafia, con il migliore sfasamento del mondo, anche superiore alle 24 ore, ma ho solo tenuto fuori il sole! Non è lui l’unico colpevole! Ripeto che siamo noi! noi siamo i colpevoli!

Certo, se siamo via tutto il giorno, pranzando e cenando fuori e usando la casa come un albergo, la stratigrafia che ci protegge dal caldo estivo potrebbe anche funzionare e soddisfarci pienamente.  Se invece viviamo la casa intensamente abbiamo bisogno di un progetto ben più accurato!  Noi, per il solo fatto di esistere a 37° C di temperatura corporea siamo degli intrusi surriscaldanti – e poi c’è il cucinare, il lavare, lo stirare, accendendo qua e là luci ed elettrodomestici che peggiorano ulteriormente la situazione interna. Il surriscaldamento è dietro l’angolo!

Abbiamo raccontato al nostro progettista il nostro stile di vita? no? male! Si deve conoscere il nemico per sconfiggerlo!

Consiglio sempre di progettare l’involucro edilizio tenendo conto del problema del surriscaldamento interno degli ambienti. Non si può e non ci si deve limitare ad ottenere una certa trasmittanza termica U – questo sarebbe un progetto banale e sciocco. Anche progettare con un soddisfacente sfasamento dell’onda termica sarebbe riduttivo! Il sole sta fuori, ma noi siamo dentro! e siamo dei fornellini !

La progettazione del benessere estivo, quello passivo, ben inteso – non sto parlando di impianti di raffrescamento! troppo facile riempire la casa di impianti perchè il progetto è scarso! – è da concentrare sulla qualità del materiale del lato più interno, il più vicino a noi, i primi centimetri della stratigrafia.

Cosa possono quei primi centimetri del lato interno? farsi carico dell’energia che noi stessi produciamo all’interno!

Torniamo allo spessore della parete in x-lam:

più lo aumentiamo e meno bisogno di coibentazione abbiamo sul lato esterno! Di solito, chi arriva a sognare di avere una casa in legno sogna anche prestazioni da casa passiva… e la trasmittanza termica della parete vorrebbe essere U = 0,15 W/mqK (questo dato indica il poco che disperde la parete) – andiamo a vedere quanto isolante termico devo posare esternamente per ottenere questa buona prestazione al variare dello spessore dell’ x-lam:

stratigrafia x-lam fibra legno

  • x-lam da 14,3 cm + fibra di legno cm. 20 con sfasamento estivo di  ore 19 e fattore di attenuazione 0,06
  • x-lam da 20 cm + fibra di legno cm. 18 con sfasamento estivo di  ore 21 e fattore di attenuazione 0,03
  • x-lam da 25,7 cm + fibra di legno cm. 17 con sfasamento estivo di  ore 23,2 e fattore di attenuazione 0,02
  • x-lam da 31,4 cm + fibra di legno cm. 16 con sfasamento estivo di  ore 26,5 e fattore di attenuazione 0,01

che dire?

  • uno spessore più che doppio della parete in x-lam ci permette di risparmiare 4cm di fibra di legno esterna. si potrebbe dire che non ne vale proprio la pena dato il costo della parete!
  • se però guardo anche lo sfasamento che ottengo e l’ottimo valore del fattore di attenuazione devo ammettere che la costosa parete in x-lam da 31,4 è eccezionale!

qualcuno penserà: e aumentare lo spessore del cappotto per ottenere simili risultati? più parete o più cappotto? più legno o più isolante? (io che conosco già il risultato aggiungo che si dovrebbe conoscere la zona climatica per prendere una saggia decisione) vediamo:

valori simili a quelli della parete in x-lam da 31,4 cm + fibra di legno cm. 16 (sfasamento estivo di  ore 26,5 e fattore di attenuazione 0,01) si ottengono con la parete più sottile in x-lam da 14,3 posando ben 34 cm di fibra di legno esterna (più del doppio di isolante):

  • x-lam da 31,4 cm + fibra di legno cm. 16 con sfasamento estivo di  ore 26,5 e fattore di attenuazione 0,01
  • x-lam da 14,3 cm + fibra di legno cm. 34 con sfasamento estivo di  ore 26,3 e fattore di attenuazione 0,01

Perchè ho detto che si dovrebbe conoscere la zona climatica per prendere una saggia decisione? semplicemente perchè con l’enorme spessore di isolante la sottile parete in x-lam da 14,3 cm raggiunge una trasmittanza record di U = 0,10 W/mqK, forse utile in zona climatica F.

Portafogli alla mano, penso che sia più economico un grosso cappotto anzichè una grossa parete portante in x-lam, o mi sbaglio?

Comunque non era questo il tema di questo articolo – volevo parlare di comfort estivo:

Tutte le soluzioni offrono ottima protezione dal caldo estivo! ma, come anticipato, si deve migliorare il più possibile la stratigrafia sul lato interno. Il benessere estivo passivo, si ottiene con la qualità dei primi centimetri della stratigrafia, quelli in grado di farsi carico dell’energia che noi stessi produciamo all’interno! e lo spessore dell’ x-lam è utile o no in questo senso? più è grossa la parete in x-lam e più comfort estivo otterremo? La risposta è no!

Tutta la sfida si concentra sulla lastra in fibrogesso! Attenzione attenzione… alcune aziende per risparmiare propongono addirittura il cartongesso sul lato interno! Tanto è la stessa cosa, dicono!

Se ascoltate il mio consiglio, il minimo accettabile dev’ essere una lastra in fibrogesso, ma è bene sottolineare che 12,5 mm di fibrogesso offrono sì una certa capacità di assorbire calore internamente, ma per evitare il surriscaldamento estivo meglio alti valori di capacità termica areica interna!

La capacità termica areica interna di una stratigrafia non è un valore di sensazioni o di esperienza – è proprio un valore da calcolare e da confrontare! e questo valore non dev’essere letto da solo: immaginate una parete di mattoni pieni, ovviamente ha un valore ben più alto di una lastra in fibrogesso, ma se i mattoni non hanno ricevuto una protezione dal caldo estivo sul lato esterno con un adeguato sistema a cappotto nulla potranno fare per noi pur dimostrando un elevato valore di capacità termica areica interna!

Tutte le pareti esaminate prima:

  • x-lam da 14,3 cm + fibra di legno cm. 20 con sfasamento estivo di  ore 19 e fattore di attenuazione 0,06
  • x-lam da 20 cm + fibra di legno cm. 18 con sfasamento estivo di  ore 21 e fattore di attenuazione 0,03
  • x-lam da 25,7 cm + fibra di legno cm. 17 con sfasamento estivo di  ore 23,2 e fattore di attenuazione 0,02
  • x-lam da 31,4 cm + fibra di legno cm. 16 con sfasamento estivo di  ore 26,5 e fattore di attenuazione 0,01

prevedendo di posare sul lato interno una lastra da 12,5 mm di fibrogesso offrono una  capacità di assorbire calore internamente pari a 35 kJ/m2K

La Capacità termica periodica del lato interno (capacità areica interna) si esprime con K1 [kJ/m2K]

per migliorare il comfort estivo la prima cosa che può venire in mente di fare è posare una 2° lastra da 12,5 mm di fibrogesso raggiungendo una capacità termica areica interna pari a 41 kJ/m2K:

notate che il valore di capacità termica areica interna è cresciuto di quasi il 20% con pochi millimetri!

E’ diventato un articolo lunghissimo (spero non noioso), ma quello che volevo trasmettervi è il concetto che non basta comperare una casa di legno per avere un isolamento incredibile e star bene d’estate! Le variabili da tenere in considerazione sono molte e tutte contemporaneamente, la qualità e le caratteristiche dei materiali vanno decise con cura per chiudere la fase progettuale senza future delusioni.

Rieccovi l’immagine che rappresenta meglio di 1507 parole questo concetto un po’ sconosciuto – nella casa di legno si deve progettare tanta massa:

casa in legno massa interna

lettura senza banner pubblicitari grazie alla generosità dei lettori – dona anche Tu!

+ involucro - impianti copyright

federico_sampaoli_espertocasaclimacom  ipha_member   articolo ideato, scritto e diretto da Federico Sampaoli, impegnato a favore delle persone, del comfort e dell’open information, titolare e caporedattore di espertocasaclima.com – blog di formazione e comunicazione online dal 2009.

Se vuoi conoscere il mio profilo LinkedIn

Entra anche Tu nella lista dei sostenitori del Blog espertoCasaClima :


Visita il profilo di federico su Pinterest.

La protezione dal caldo si ottiene con tanta massa ?

Marco G., preoccupato per la scelta dei materiali isolanti da posare sulla soletta in laterocemento del sottotetto scrive

<< I materiali che io conosco (fiocchi di cellulosa, lana di vetro o di roccia, palline di EPS), da posare sulla soletta di copertura hanno comunque tutti una massa ridotta e in quanto tale non sono adatti per la protezione al caldo. Mi può suggerire un materiale idoneo? Una ditta mi ha proposto un liquido bicomponente che posato diventa schiuma: ISOL 40 (poliolo formulato avente OPD=0) 40 kg/mc, lambda 0,023….. Però ha sempre una massa ridotta… Il termotecnico che sta facendo la legge 10 sostiene che anche con materiali come l’EPS per ottenere un’idonea protezione dal caldo basta aumentare lo spessore… >>

Beh, una cosa è certa: per ottenere idonea protezione dal caldo con l’EPS, o qualunque materiale isolante non proprio adatto a questo scopo, basta aumentare lo spessore così tanto che anche lo sfasamento risulti soddisfacente.

sottotetto protezione dal caldo

Prendiamo come esempio una soletta in latero cemento di un sottotetto con spessore 18cm (fissiamo la Resistenza termica sup interna Rsi [m2K/W] a 0,10 e la Resistenza termica sup esterna Rse [m2K/W] a 0,10):

  • lo stato di fatto parla chiaro: discomfort in tutte le stagioni – in inverno alte dispersioni (trasmittanza U = 2,11 W/mqK) e in estate forte surriscaldamento (sfasamento di appena 4 ore)
  • lo stato di progetto? si deve progettare… calcolare… confrontare…. decidere… e applicare! (sì anche pagare… anche chi progetta va pagato, non solo chi si sporca le mani!)

Il termotecnico che sta facendo la legge 10 non ha sbagliato, anche con l’EPS si ottiene la protezione dal caldo – basta aumentare lo spessore!

Certo! se non sono capace di progettare e non conosco le caratteristiche dei materiali e non so se un coibente sia adatto o poco adatto ad evitare il surriscaldamento uso anche un materiale poco idoneo con uno spessore tale che diventa idoneo. Molti progettano in questo modo.

Ecco allora che con

  • mezzo metro (50cm) di polistirolo ottengo comfort in tutte le stagioni – in inverno bassissime dispersioni (trasmittanza U = 0,07 W/mqK) e in estate poco surriscaldamento (sfasamento di 12 ore) (l’ attenuazione resta comunque da migliorare).

Mi domando – e questa è una critica – ma non si fa un’analisi delle prestazioni invernali e della protezione estiva per un adeguato comfort in tutte le stagioni (Prestazione Energetica Estiva – Metodo dei parametri qualitativi)? Non si fa una verifica delle prestazioni della copertura secondo il DPR 2/4/2009 n.59 a proposito di protezione estiva (Trasmittanza termica periodica |Yie| U/dyn < 0,20 W/m2K) e secondo il DM 26/6/09 a proposito di protezione estiva (sfasamento > 12 ore)?

Le norme, i DPR, i DM sono solo una gran rottura di *****? Convengo! Ma allora sediamoci e progettiamo meglio per i nostri clienti!

Come si progetta la protezione dal caldo?

Marco G. è a caccia di materiali coibenti che non abbiano massa ridotta – è convinto che con tanta massa il problema del surriscaldamento estivo sparirebbe.

sottotetto protezione dal caldo

La massa gioca un ruolo nella partita contro il caldo, ma non l’unico! Potrei avere uno sfasamento > di 12 ore costruendo 3 solai uno sopra l’altro con una massa per metroquadro di quasi 600kg. (i trulli insegnano!).

La via corretta per ottenere una ottima protezione dal caldo evitando il surriscaldamento estivo è cercare materiali coibenti che offrano tanta capacità termica massica, quei materiali con elevato calore specifico (c) espresso solitamente in J/kgK.

Il calore specifico dipende solo dalla sostanza di cui è costituito: il calore specifico è il rapporto tra la quantità di calore scambiata da un corpo conseguentemente ad una variazione di temperatura (t) e il prodotto della massa per la variazione della temperatura.

Tanto per prendere come esempio il primo materiale menzionato da Marco G. posso dire che i fiocchi di cellulosa hanno proprio il pregio di avere elevato calore specifico, ben 2110 J/kgK.

E la massa?

Gran parte della massa sta sotto (quella del solaio) utilissima per scaricarci energia dall’interno quando ne producessimo in eccesso. E i fiocchi di cellulosa quanta massa offrono? Un peso piuma? dipende! Se i fiocchi di cellulosa vengono sparati dentro ad un’intercapedine creata ad hoc sulla soletta nel sottotetto con una macchina per insufflaggio posso anche arrivare a 65kg/mc, ma se voglio una posa libera dei fiocchi (senza costruire l’intercapedine) riuscirò ad ottenere una densità media di circa 34-40kg/mc con i seguenti risultati:

  • 30cm di fiocchi di cellulosa 65kg/mc: comfort in tutte le stagioni – in inverno bassissime dispersioni (trasmittanza U = 0,122 W/mqK) e in estate ottima protezione dal surriscaldamento (sfasamento di quasi 16 ore)
  • 30cm di fiocchi di cellulosa 40kg/mc: comfort in tutte le stagioni – in inverno bassissime dispersioni (trasmittanza U = 0,122 W/mqK) e in estate buona protezione dal surriscaldamento (sfasamento di oltre 13 ore)

Con soli 20cm di fibra di legno ottengo prestazioni simili. Anche questo materiale ha elevata capacità termica massica, e anche buona densità (110kg/mc, ma anche di più). Si può scegliere una densità maggiore, ad un costo maggiore, e prestazioni eccezionali.

Non perdo tempo a confrontare le prestazioni della schiuma ISOL 40 che pubblica una scheda tecnica che aiuta a non capirci nulla (o almeno io non ci capisco nulla e soprattutto non trovo i dati per me più interessanti). Lascio perdere.

Nota per i produttori:

  • alcuni produttori nascondono le schede tecniche nella sezione download con password e iscrizione. Che se le tenessero pure sotto il cuscino! Intanto chi fa ricerca trova altri materiali (PIU’ TRASPARENTI !!!!).
  • alcuni produttori pubblicano schede tecniche con dati mancanti. Che se le tenessero! Intanto chi fa ricerca trova altri materiali (PIU’ TRASPARENTI !!!!).
  • i produttori da premiare pubblicano sempre dati completi e di più… senza mancare mai conduttività termica, calore specifico e densità del materiale. A loro il mio personale grazie!

 

       

lettura senza banner pubblicitari grazie alla generosità dei lettori – dona anche Tu!

+ involucro - impianti copyright

federico_sampaoli_espertocasaclimacom  ipha_member   articolo ideato, scritto e diretto da Federico Sampaoli, impegnato a favore delle persone, del comfort e dell’open information, titolare e caporedattore di espertocasaclima.com – blog di formazione e comunicazione online dal 2009.

Se vuoi conoscere il mio profilo LinkedIn

Entra anche Tu nella lista dei sostenitori del Blog espertoCasaClima :

Visita il profilo di federico su Pinterest.