Tag Archives: dispersioni

Costruire con un buon blocco porizzato senza cappotto con i nuovi limiti di trasmittanza termica del DM 26.6.2015

Costruire un edificio in laterizio con elevata classe energetica significa per forza scegliere una muratura e prevedere un sistema termoisolante a cappotto?

No.

Oggi possiamo scegliere tra molti blocchi in laterizio con elevata capacità di contenere le dispersioni invernali!

costruire-blocco-porizzato-cappotto-limiti-trasmittanza-dm-26-6-2015 -10

Una costruzione tradizionale, in laterizio, ad umido, non necessariamente deve utilizzare i mattoni della nonna e tanta malta di allettamento. Il mattone pieno dei nostri nonni aveva certamente una massa enorme, ma nel nostro clima una parete di mattone pieno disperde molta energia d’inverno e si surriscalda d’estate. Il trucco dell’intercapedine d’aria tra due file di mattoni migliorava la situazione in entrambe le stagioni, ma in definitiva l’edificio rimaneva energivoro e poco adatto alla protezione dal caldo. Un forte spessore di muratura diventava ottimo d’estate, ma rimaneva scarso d’inverno e poco confortevole in primavera.

Oggi possiamo progettare edifici in laterizio molto performanti molto facilmente.

Come?

Investendo nella qualità del blocco e nelle sue prestazioni termiche.

costruire-blocco-porizzato-cappotto-limiti-trasmittanza-dm-26-6-2015

Sicuramente una buona notizia per quanti odiano l’idea di avere un cappotto esterno, anche della migliore qualità. Appiccicare l’isolante sulle facciate è la migliore forma di protezione dal caldo e dal freddo scegliendo opportunamente materiali e spessori da impiegare, ma in generale questa tecnica non piace:

  • e per il costo
  • e per la sensazione di poca durata
  • e per la vecchia idea che i muri non possono respirare
  • e se vogliamo, anche per il brutto suono che produce la parete quando si bussa a testarne la consistenza.

costruire-blocco-porizzato-cappotto-limiti-trasmittanza-dm-26-6-2015 cappotto

Le antipatie sono abbastanza diffuse. Le simpatie verso i sistemi termoisolanti a cappotto sono solo per la bassa bolletta energetica: spesso unica consolazione dopo tanto investimento.

Avendo la possibilità di scegliere il tipo di muratura con cui edificare, possiamo fin dalla fase progettuale prevedere di rinunciare all’isolamento dall’esterno e puntare tutto sulle prestazioni del blocco – blocco di tamponamento o portante sismico che sia (il blocco per tamponamento, quello che viene utilizzato in un edificio con struttura portante in calcestruzzo armato, è sensibilmente più spinto come isolamento rispetto al suo gemello blocco portante sismico).

Ho ricordato all’inizio che oggi possiamo progettare edifici in laterizio molto performanti investendo nella qualità del blocco e nelle sue prestazioni termiche.

Se avete già fatto qualche ricerca a questo proposito, o ricevuto qualche proposta da qualche costruttore, avrete sentito parlare di laterizio porizzato. Si fa così:

  • l’impasto viene alleggerito additivando all’argilla cruda degli alleggerenti, prima della formatura, e poi cotto.

costruire-blocco-porizzato-cappotto-limiti-trasmittanza-dm-26-6-2015-01

Queste macro porizzazioni si possono ottenere miscelando

  • polistirolo in forma di piccole sfere (nella cottura brucia scindendosi in anidride carbonica ed acqua)
  • farine fossili, farine di cellulosa, farine di legno ed altri alleggerenti di natura organica e non.

I blocchi porizzati sono pieni di macropori o micropori tra loro non comunicanti, privi di depositi carboniosi e contenenti solo aria.

Non c’è dubbio che i blocchi fatti con argilla e farina di legno vergine diano più garanzie ad un ambiente che vuole essere biocompatibile. 

costruire-blocco-porizzato-cappotto-limiti-trasmittanza-dm-26-6-2015-02

Con un blocco porizzato e rettificato posato con malta speciale possiamo ottenere le prestazioni che vogliamo?

Dipende!

In questo articolo non voglio prendere in considerazione i blocchi rettificati riempiti con lana di roccia, la lana di roccia non mi piace e anche se potrei optare per i blocchi riempiti con perlite preferisco analizzare il laterizio in sè, con la sua struttura, i suoi alveoli, i suoi pori e il suo spessore.

costruire-blocco-porizzato-cappotto-limiti-trasmittanza-dm-26-6-2015-04

Quando un blocco è rettificato significa che ha facce di appoggio superiori ed inferiori “rettificate” (perfette per planarità e parallelismo) e questa perfezione permette di avere giunti di 1 solo mm e la posa con malta speciale: meno giunti e meno malta = meno ponti termici e migliori prestazioni.

costruire-blocco-porizzato-cappotto-limiti-trasmittanza-dm-26-6-2015-03

Cominciamo a dare i numeri?

Qual’è il dato che ognuno vorrebbe conoscere? Sì, al di là del prezzo.. La trasmittanza U che si potrebbe ottenere.

Ricostruiamo, con 2383 Gradi Giorno siamo in zona climatica E:

demolizione-riscotruzione-platea-calda-fondazione-isolamento-terreno-tradizionale-02

essendo in vigore il DM 26.6.2015 già dal 1° ottobre scorso dobbiamo per forza riferirci ai nuovi limiti di trasmittanza previsti quando ragioniamo sulle strutture opache verticali verso l’esterno:

costruire-blocco-porizzato-cappotto-limiti-trasmittanza-dm-26-6-2015-05

Per contenere le dispersioni dobbiamo garantire una trasmittanza U inferiore a 0,30 W/mqK.

Possiamo rispettare questo limite usando un blocco porizzato rettificato senza cappotto? Anche senza intonaco esterno termoisolante?

Andiamo a scoprirlo.

costruire-blocco-porizzato-cappotto-limiti-trasmittanza-dm-26-6-2015-02

Con un blocco porizzato rettificato di spessore 45 cm (conducibilità termica pari a 0,09 W/mK) è facile rispettare i limiti di trasmittanza garantendo una trasmittanza U di circa 0,20 W/mqK:

Descrizione degli strati Spessore (s) [m] Conduttività termica (l) [W/mK] Resistenza termica [mqK/W] Calore specifico (c) [J/kgK] Densità (?) [kg/m3]
Rsi Aria Strato laminare interno 1 2 3 4
1 intonaco calce fine 0,001 0,540 1000 1350
2 intonaco calce 0,011 0,700 1000 1350
3 calce rinzaffo 0,003 0,930 1000 1350
4 blocco porizzato rett 0,450 0,094 1000 780
5 calce rinzaffo 0,003 0,930 1000 1350
6 intonaco calce cemento 0,017 0,890 840 1850

costruire-blocco-porizzato-cappotto-limiti-trasmittanza-dm-26-6-2015-02 38cm

Ma anche con un blocco porizzato rettificato meno imponente e di spessore 38 cm (conducibilità termica pari a 0,09 W/mK) è facile rispettare i limiti di trasmittanza garantendo una trasmittanza U di circa 0,23 W/mqK:

Descrizione degli strati Spessore (s) [m] Conduttività termica (l) [W/mK] Resistenza termica [mqK/W] Calore specifico (c) [J/kgK] Densità (?) [kg/m3]
Rsi Aria Strato laminare interno 1 2 3 4
1 intonaco calce fine 0,001 0,540 1000 1350
2 intonaco calce 0,011 0,700 1000 1350
3 calce rinzaffo 0,003 0,930 1000 1350
4 blocco porizzato rett 0,380 0,090 1000 780
5 calce rinzaffo 0,003 0,930 1000 1350
6 intonaco calce cemento 0,017 0,890 840 1850

Un blocco porizzato modulare non rettificato, posato con malta tradizionale e di spessore 35 cm (conducibilità termica pari a 0,257 W/mK) invece non riesce in nessun caso a rispettare i limiti di trasmittanza e per garantire una trasmittanza U di circa 0,24 W/mqK ha bisogno di un sistema a cappotto di ben 8cm di spessore se utilizziamo un performante pannello in EPS con grafite:

Descrizione degli strati Spessore (s) [m] Conduttività termica (l) [W/mK] Resistenza termica [mqK/W] Calore specifico (c) [J/kgK] Densità (?) [kg/m3]
Rsi Aria Strato laminare interno 1 2 3 4
1 intonaco calce fine 0,001 0,540 1000 1350
2 intonaco calce 0,011 0,700 1000 1350
3 calce rinzaffo 0,003 0,930 1000 1350
4 blocco porizzato malta tr 0,350 0,257 1000 860
5 collante 0,005 0,540 1111 1150
6 EPS grafite 0,080 0,031 1500 15
7 rasante 0,005 0,540 1111 1150
8 finitura silossani 0,002 0,700 1000 1800

Che si decida per blocco + cappotto o blocco rettificato, stiamo sempre parlando di spessori oltre i 40cm.

intonaco calce fine 0,10   intonaco calce fine 0,10   intonaco calce fine 0,10
intonaco calce 1,10   intonaco calce 1,10   intonaco calce 1,10
calce rinzaffo 0,30   calce rinzaffo 0,30   calce rinzaffo 0,30
blocco porizzato malta tr 35,00   blocco porizzato rett 38,00   blocco porizzato rett 45,00
collante 0,50   calce rinzaffo 0,30   calce rinzaffo 0,30
EPS grafite 8,00   intonaco calce cemento 1,70   intonaco calce cemento 1,70
rasante 0,50            
finitura silossani 0,20            
               
               
               
               
               
               
               
spessore cm. 45,7   spessore cm. 41,5   spessore cm. 48,5

In realtà il blocco modulare non rettificato potrebbe anche essere usato nell’altro verso formando una muratura di 25cm di spessore + 8cm di cappotto, ma la protezione contro il caldo è per me appena accettabile con 12 ore di sfasamento e sarebbe indicata per una parete esposta a Nord.

Ma a proposito! le tre stratigrafie come si comportano d’estate?

costruire-blocco-porizzato-cappotto-limiti-trasmittanza-dm-26-6-2015 sfasamento

Il valore di sfasamento per tutte 3 le soluzioni è molto buono:

  • oltre 28 ore per il blocco porizzato rettificato di spessore 45 cm (conducibilità termica pari a 0,09 W/mK)
  • oltre 24 ore per il blocco porizzato rettificato meno imponente e di spessore 38 cm (conducibilità termica pari a 0,09 W/mK)
  • oltre 16 ore per il blocco porizzato modulare non rettificato, posato con malta tradizionale e di spessore 35 cm (conducibilità termica pari a 0,257 W/mK) con cappotto

Si deve ammettere che la prestazione energetica estiva è ottima anche per il blocco modulare con cappotto (l’EPS non è proprio un materiale indicato per la protezione dal caldo).

Qual’è l’unico aspetto estivo che si potrebbe sottolineare a favore della stratigrafia blocco porizzato + cappotto?

Proprio il fatto che questo tipo di blocco non sia eccezionale come prestazioni!

La sua massa è protetta dal sistema a cappotto (isolante esterno + muratura interna sono la migliore prerogativa per un involucro fantastico in tutte le stagioni).

Tanta massa sul lato interno non è solo importante in periodo di riscaldamento a garantire temperature interne con poche oscillazioni e ottimale capacità di accumulo (inerzia) – è molto utile d’estate perchè possiamo scaricare nella muratura tutta l’energia in eccesso proveniente dall’interno! Quell’energia che senza accorgercene produciamo abitando la casa (dal calore corporeo al calore degli elettrodomestici).

I carichi interni:

Avete mai riflettuto su questo aspetto? Tra le valutazioni da fare, anche questo è un aspetto importante!

Può un blocco porizzato rettificato e ad alte prestazioni offrire la stessa capacità di assorbire energia sul lato interno di un blocco semplice con un cappotto esterno? Già dal fatto che i due blocchi rettificati hanno bassissima conducibilità termica e ottimi valori di sfasamento estivo possiamo capire che rispetto al blocco semplice con cappotto non siano dei campioni di capacità areica interna (così si chiama la capacità di assorbire calore sul lato interno):

Capacità termica periodica del lato interno:
la capacità areica interna
K1 [kJ/m2K]
45,5     36,2     36,5
Per evitare il surriscaldamento estivo,
meglio alti valori di capacità di assorbire calore sul lato interno
     

Dobbiamo per questo rivedere tutti i nostri ragionamenti?

Io direi di no, o almeno non per questo. La più scarsa prestazione dei blocchi rettificati in fatto di accumulare / assorbire energia, da un lato è compensata da molte ore di sfasamento in più a disposizione e da un lato è un valore che si corregge facilmente con la scelta dell’intonaco per il lato interno.

Non occorre disperare e cambiare progetto.

A dire tutta la verità ho visto molto molto raramente (leggi mai) un progettista arrovellarsi per offrire al cliente una stratigrafia che dia attenzione a questo importante valore.

chilo Joule su metro quadro Kelvin… e che sarà mai? una nuova trovata?

Si potrebbe dire che

  • il blocco porizzato rettificato da cm 38 di spessore equivale un po’ al blocco modulare da cm 35 + cappotto da 8 cm,
  • mentre il blocco porizzato rettificato da 45 cm di spessore sia veramente qualcosa in più.

E lo dicono anche i numeri: 392 ore di costante di tempo termica per il blocco col cappotto e ben 558 ore per il blocco porizzato rettificato con spessore 45 cm.

Costante di tempo termica
T [ h ]
392     428     558
Misura l’inerzia della struttura, l’indifferenza al clima esterno      

E se parlassimo anche dell’aspetto igrometrico?

Quando l’isolante è sul lato esterno dell’involucro (caso del blocco modulare con cappotto), la massa interna, oltre ad essere importante per il comfort, gioca un ruolo fondamentale nell’accumulo igroscopico. Un isolante sul lato esterno come l’EPS ha curva di adsorbimento bassa) quindi è il laterizio ad avere tutto l’onere di accumulo igroscopico ad evitare i rischi di condensa.

Davanti a qualsiasi scelta costruttiva teniamo a mente che il comfort estivo è offerto dalla stratigrafia

  • con maggiore inerzia termica sul lato interno,
  • e dunque con maggiore capacità areica interna
  • e con maggior numero di ore di sfasamento (una parete che si surriscalda velocemente a causa del calore del sole non potrà mai offrire sul lato interno una decente capacità di assorbire ulteriore energia!)

Pensate ai trulli! una elevata inerzia interna garantisce sempre temperature superficiali interne e operanti più basse rispetto alle soluzioni con porizzati ad alte prestazioni riempiti con isolante o mattoni in calcestruzzo porizzato o pareti in legno e isolante: e d’estate, avere qualche grado °C in meno in ambiente fa la differenza.

Sono state fatte diverse analisi sui blocchi porizzati di ultima generazione e si consoce ormai il loro comportamento in ogni stagione e in ogni ora del giorno:

in estate:

costruire-blocco-porizzato-cappotto-limiti-trasmittanza-dm-26-6-2015 -08

in inverno:

costruire-blocco-porizzato-cappotto-limiti-trasmittanza-dm-26-6-2015 -07

La cosa più entusiasmante delle analisi è che le oscillazioni di temperatura sul lato interno praticamente non si fanno sentire.

Questo articolo non vuole dirvi come dovete costruire,

vuole raccontarvi come potete costruire!

Fin qui ho parlato delle caratteristiche della muratura, delle prestazioni invernali ed estive che si ottengono, abbiamo completamente sorvolato sulle soluzioni per attenuare i ponti termici più forti.

Una bella parete omogenea senza variazioni di direzione o parti strutturali o fori finestra garantisce ottimamente tutti i valori indicati sopra a proposito di dispersioni termiche e conseguenti valori di trasmittanza termica U.

Ma le case non sono delle scatole e ogni dettaglio va analizzato e progettato.

Se il piede della muratura è un dettaglio relativamente facile da risolvere:

Anfaenger_Trionic_02_a3eb9e5c16

costruire-blocco-porizzato-cappotto-limiti-trasmittanza-dm-26-6-2015 -06

costruire-blocco-porizzato-cappotto-limiti-trasmittanza-dm-26-6-2015 -09

Lo è meno un foro finestra, dove tutto il contorno rappresenta un ponte termico di parecchi metri lineari.

Schermata 2016-03-31 alle 15.20.24

Come affrontare il ponte termico di installazione del serramento in una muratura porizzata?

Come individuare la posizione del telaio perchè il valore Uwi sia il più favorevole?

Nel prossimo articolo, con l’aiuto del termotecnico Marco De Pinto andremo a vedere approfonditamente questo dettaglio.


lettura senza banner pubblicitari grazie alla generosità dei lettori – dona anche Tu!

+ involucro - impianti copyright

federico_sampaoli_espertocasaclimacom  ipha_member   articolo ideato, scritto e diretto da Federico Sampaoli, impegnato a favore delle persone, del comfort e dell’open information, titolare e caporedattore di espertocasaclima.com – blog di formazione e comunicazione online dal 2009.

Se vuoi conoscere il mio profilo LinkedIn

Entra anche Tu nella lista dei sostenitori del Blog espertoCasaClima :

Visita il profilo di federico su Pinterest.

Demolizione e riscotruzione, platea calda o fondazione tradizionale?

La demolizione in favore di una ricostruzione è l’occasione per rivedere ogni aspetto progettuale. Non sono sempre e comunque favorevole alla demolizione, ma di fronte a murature in mattone pieno bagnate e fondazioni inesistenti, inutile sforzarsi troppo e affrontare un cantiere con grosse incognite di spesa e interventi forse risolutivi e forse no.

Ricostruiamo, con 2383 Gradi Giorno siamo in zona climatica E:

demolizione-riscotruzione-platea-calda-fondazione-isolamento-terreno-tradizionale-02

essendo in vigore il DM 26.6.2015 già dal 1° ottobre scorso dobbiamo per forza riferirci ai nuovi limiti di trasmittanza previsti quando ragioniamo sul solaio verso terra.

demolizione-riscotruzione-platea-calda-fondazione-isolamento-terreno-tradizionale-01

Per contenere le dispersioni verso il basso dobbiamo garantire una trasmittanza U inferiore a 0,30 W/mqK

Naturalmente sarebbe possibile partire con la fondazione, e solo successivamente posare lo strato di coibentazione idoneo. In progetto era infatti la realizzazione di un getto armato su igloo.

Ma perchè non cambiare radicalmente strategia e progettare una platea di fondazione poggiante sull’isolante? Ottenere una platea calda quali aspetti positivi porta all’edificio in riscostruzione? Molteplici, ma ne voglio evidenziare alcuni:

  • solaio verso terra già isolato termicamente (una massa enorme di circa 800 kg /mq a temperatura quasi ambiente)
  • solaio verso terra distaccato dal terreno che allontana il rischio di umidità di risalita
  • piede della muratura caldo con conseguente ponte termico già attenuato
  • passaggi impiantistici affogati nello spessore alleggerito con temperature molto stabili
  • poco sbancamento del terreno

I nuovi limiti di trasmittanza impongono a questa scelta costruttiva enormi spessori di coibentazione? Di fatto no. Sono sempre favorevole a forti spessori di isolamento termico – non vedo intelligenza nel rispettare unicamente i limiti imposti dal legislatore – meglio far meglio. Ma torniamo al punto: il solaio verso terra avrà in sostanza due (si potrebbe dire 3) strati dedicati alla coibentazione:

  1. il pannello isolante sottofondazione che verrà sistemato sopra al magrone armato sopra lo stabilizzato di base
  2. il getto in calcestruzzo cellulare leggero o sottofondo alleggerito termoisolante premiscelato che equivale allo spessore necessario agli impianti e alle loro pendenze
  3. l’eventuale spessore dedicato all’anticalpestio che permette al massetto di finitura di essere galleggiante, quindi desolarizzato.

Se tutti gli altri strati sono molto conducenti e dispersivi, questi 3 strati sono quelli che permettono alla stratigrafia di fondazione di rispettare i limiti di trasmittanza termica.

Vediamoli tutti insieme in stratigrafia:

Descrizione degli strati Spessore (s) [m] Conduttività termica (l) [W/mK] Resistenza termica [mqK/W] Calore specifico (c) [J/kgK] Densità (?) [kg/m3]
Rsi Aria Strato laminare interno 1 2 3 4
1 Piastrella 0,010 1,300 840 2300
2 collante x piastrella 0,003 0,510   1111 1700
3 massetto 0,050 1,600 1000 2300
4 anticalpestio 0,010 0,037 1400 30
5 alleggerito 0,100 0,098 1000 400
6 cls armato 0,250 2,500 880 2400
7 foglio in PE polietilene 0,002 0,040   1400 92
8 isolante 0,080 0,035 1450 35
9 magrone armato
10 stabilizzato di base

Guardando lo strato n.8, il primo strato isolante che incontriamo partendo dall’esterno, sembra che già 8cm siano sufficienti a mettere in regola il pacchetto verso terra: si tratta di un pannello battentato sui 4 lati in schiuma in polistirene espanso estruso XPS esente da HCFC, HFA e HFC che offre resistenza alla compressione a lungo termine > 250 kPa.

demolizione-riscotruzione-platea-calda-fondazione-isolamento-terreno-tradizionale-03

L’intera stratigrafia, inserendo i valori di lambda Dichiarato, garantisce dispersioni termiche verso il basso pari a soli 0,254 W/mqK

Trasmittanza   U [W/m2K] 0,254

Tutti sanno che il terreno offre una enorme inerzia e avere il terreno come strato più esterno è una garanzia maggiore contro gli sbalzi termici e le rigide temperature invernali di alcune settimane dell’anno. Possiamo dire che la platea di fondazione gode di un clima ben più favorevole rispetto alla copertura o alle pareti esterne – la platea è più protetta.

Il flusso termico è naturalmente discendente e posso applicare il “fattore correzione terreno” pari a 0,45: dunque il valore di trasmittanza U * 0,45.

Nel calcolo inserirò come Resistenza termica esterna il valore zero:

Resistenza termica sup esterna Rse     [m2K/W] 0,00

 Avrei affrontato un costo minore se avessi posato gli igloo e avessi previsto una fondazione di forma diversa? Avrei un edificio con prestazioni termiche migliorate? Non credo proprio.

lettura senza banner pubblicitari grazie alla generosità dei lettori – dona anche Tu!

+ involucro - impianti copyright

federico_sampaoli_espertocasaclimacom  ipha_member   articolo ideato, scritto e diretto da Federico Sampaoli, impegnato a favore delle persone, del comfort e dell’open information, titolare e caporedattore di espertocasaclima.com – blog di formazione e comunicazione online dal 2009.

Se vuoi conoscere il mio profilo LinkedIn

Entra anche Tu nella lista dei sostenitori del Blog espertoCasaClima :


Visita il profilo di federico su Pinterest.

I ponti termici decidono gli impianti?

E’ comune convinzione che il ponte termico in sè sia certamente un problema da non sottovalutare per il fatto che potrebbe creare condense superficiali e magari zone a rischio muffa, ma in definitiva un aspetto importante solo per chi sta puntando alla casa passiva o ad una classe energetica molto elevata, insomma l’analisi dei ponti termici è roba da Classe A. Come dire… sono cose per la Formula 1 e non per la mia auto che arriva a 160km/h.

Il ponte termico è enormemente sottovalutato e nelle ristrutturazioni è appena appena argomento di progettazione.

incidenza dispersioni  ponti termici

Prendiamo ora in considerazione un appartamento oggetto di ristrutturazione ed efficientamento energetico. Facciamo il calcolo del carico termico e del fabbisogno energetico dell’abitazione: consideriamo le seguenti trasmittanze delle strutture:

  • MURO PERIMETRALE ESTERNO: 0,40 W/m2K
  • MURO verso ALTRA PROPRIETA’: 0,40 W/m2K
  • PORTONCINO D’INGRESSO: 1,80 W/m2K
  • PAVIMENTO verso abitazione riscaldata: 0,80 W/m2K
  • SOFFITTO verso LASTRICO SOLARE: 0,18 W/m2K

Le Dispersioni termiche valgono 3.100 Watt, quelle per ventilazione 600 Watt (considerando una VMC): Dispersione totale 3700 Watt.

Ma qual’è l’incidenza delle dispersioni riferita ad ogni componente? :

  • MURO PERIMETRALE ESTERNO: 33,5%
  • MURO verso ALTRA PROPRIETA’: 0,6%
  • PORTONCINO D’INGRESSO: 0,3%
  • PAVIMENTO verso abitazione riscaldata: 4,7%
  • SOFFITTO verso LASTRICO SOLARE: 13,5%

E l’incidenza delle dispersioni riferita ai ponti termici? :

  • PONTE TERMICO perimetro Solaio LASTRICO SOLARE 13,8 % (426 Watt)
  • PONTE TERMICO perimentro pavimento 5,9 % (181 Watt)
  • PONTE TERMICO Serramenti 7,3 % (225 Watt)

Totale incidenza dei ponti termici: 27 % (832 Watt)

Possiamo notare che i ponti termici incidono molto, rappresentano 1/4 sul complessivo.

Non è per fare i pignoli, ma nel momento della decisione dei nuovi impianti, il termotecnico deve assolutamente tenere conto delle dispersioni dovute all’incidenza dei ponti termici: perciò non è tempo perso progettare la correzione di questi punti sensibili e valutare bene la posizione e la cura d’installazione dei nuovi serramenti.

Avete mai indagato nella vostra abitazione quali sono i punti più freddi? Non vi servirà una costosa termocamera come questa:

è sufficiente anche un termometro digitale a infrarossi come questi:

lettura senza banner pubblicitari grazie alla generosità dei lettori – dona anche Tu!

marco-de-pinto-termotecnico  marco de pinto passivhaus planer

+ involucro - impianti copyright

federico_sampaoli_espertocasaclimacom  ipha_member   articolo ideato, scritto e diretto da Marco De Pinto e Federico Sampaoli, impegnati a favore delle persone, del comfort e dell’open information. Marco titolare dello Studio di progettazione degli impianti PH Studio.  Federico titolare dello Studio di consulenza tecnica per una migliore efficienza energetica e caporedattore di espertocasaclima.com – blog di formazione e comunicazione online dal 2009. 

Se vuoi conoscere i profili LinkedIn Marco LinkedIn Federico …

Entra anche Tu nella lista dei sostenitori del Blog espertoCasaClima :


Visita il profilo di federico su Pinterest.

Vespaio aerato, la stratigrafia ideale e i ponti termici

Subito dopo la decisione del vespaio aerato è il momento di descrivere gli strati successivi. Quale stratigrafia progettare?

vespaio aerato a spessore ridotto ed isolato

La cosa che ogni progettista vorrebbe realizzare è un vespaio aerato a spessore ridotto ed isolato, naturalmente è importante seguire questa soluzione con omogeneità su tutta la superficie: interrompere equivale a creare un forte ponte termico che per essere migliorato richiederebbe un ulteriore strato di isolante e di conseguenza nuovo spessore di cui tenere conto.

vespaio aerato a spessore ridotto ed isolato

Il pacchetto è costituito da elementi che compongono una struttura autoportante a cui si aggiungono elementi isolanti che permettono di isolare le pareti laterali dei pilastrini che si vengono a formare nel punto di unione delle gambe. Può essere inserito un apposito elemento in EPS, SottoPiede, che permette di isolare la base dei pilastrini dal magrone. Sopra questa struttura a igloo vengono posati degli elementi isolanti che separano dal pavimento superiore. Il sistema prevede elementi di chiusura laterale che fanno da isolamento delle fondazioni.

vespaio aerato a spessore ridotto ed isolato

Il sistema così composto può ricevere il getto in calcestruzzo.

vespaio aerato a spessore ridotto ed isolato

In un risanamento è molto frequente qualche impedimento alla realizzazione di questo vespaio con coibentazione integrata senza interruzioni: basti pensare all’esigenza di legare le fondazioni in un edificio che strutturalmente oggi lo richieda:

vespaio aerato a spessore ridotto ed isolato

Teoricamente, sia nel risanamento che nella nuova costruzione, il solaio sopra il vespaio aerato e isolato è di per sè una buona soluzione contro le dispersioni verso il basso (non adatto a una casa passiva magari, ma rispetto alla stragrande maggioranza delle realizzazioni, efficace). E il nodo solaio sopra igloo – pareti perimetrali (e pareti di spina)?

L’ isolamento orizzontale che si riesce ad ottenere con il sistema del vespaio aerato già isolato non risolve il ponte termico del piede della muratura che rimane fredda:

  • se si tratta di un risanamento, le pareti perimetrali esistenti hanno il sacco di fondazione in contatto con il terreno e restano fredde
  • se si tratta di una nuova costruzione e non si è progettato un taglio termico del piede della parete sulla fondazione, qualsiasi cappotto esterno, anche con zoccolatura interrata non potrà mai risolvere adeguatamente questo nodo

vespaio aerato isolato

Il ponte termico va analizzato, studiato e risolto:

vespaio aerato a spessore ridotto ed isolato

è assolutamente necessario migliorare la stratigrafia delle murature portanti in contatto con il terreno anche sul lato interno. Quando manca la continuità tra sistema a cappotto esterno e l’isolamento orizzontale si deve intervenire e in qualche modo allungare la strada al freddo sul lato interno. Altrimenti le temperature superficiali interne troppo basse farebbero risaltare l’errore progettuale. All’esterno si può migliorare la coibentazione con pannelli in XPS anche poi interrandoli.

In conclusione, cerchiamo ed applichiamo sistemi innovativi ed efficaci senza dimenticare o nasconderci il senso completo del progetto di coibentazione: la continuità.

Proseguendo nella stratigrafia orizzontale sopra gli igloo si incontrano i problemi relativi al passaggio degli impianti:

vespaio aerato a spessore ridotto ed isolato-01

gli impianti solitamente vanno annegati nel massetto alleggerito: il senso del massetto alleggerito è

  • portarsi alla quota decisa in fase progettuale
  • proteggere tutte le condotte impiantistiche
  • confinare le condotte impiantistiche in un ambiente a temperatura satbile

 Proprio per confinare le condotte impiantistiche in un ambiente a temperatura stabile consiglio di spingere sul primo strato di coibentazione che si poserà sulla cappa armata appena gettata evitando di aggiungere strati ulteriori più in alto: prima comincio ad isolare e prima ottengo buoni risultati!

federico_sampaoli_espertocasaclimacom ipha_member View federico sampaoli's profile on LinkedIn

  questo articolo è stato ideato, scritto e diretto da federico sampaoli, vuoi pubblicare un tuo articolo? scrivimi, lo prenderò in grande considerazione.

diventa anche Tu sostenitore di espertocasaclima.  esperto casaclima

- il mio profilo LinkedIn: Lin  - articoli pubblicati di recente: eCC  - commenti al blog: feed        - i miei tweet: Tw

Le finestre sono più scadenti, come calcolare il consumo energetico in più su base annua?

Il serramento negli ultimi anni è diventato un elemento con prestazioni veramente elevate, oggi è possibile scegliere per tutta la casa finestre con valori U molto bassi, per esempio Uw = 0,85 W/m2K.

Uw = 0,85 W/m2K

Capita che in fase progettuale tutte le buone intenzioni ed i sogni ci portino verso scelte veramente buone: vogliamo solo finestre con Uw = 0,85 W/m2K — poi – davanti ai preventivi, con i lavori in corso, i primi avanzamenti lavoro da pagare e gli imprevisti di cui tenere conto – anche un piccolo risparmio su una certa fornitura diventa una benedizione del cielo.

I 20 mila euro per i serramenti nuovi, che prima non erano mai stati messi in discussione, adesso sembrano una spesona! Bisogna limare:

serramenti nuovi quali scegliere

Ma se scegliessimo la serie che garantiva Uw = 1,25 W/m2K – che cosa vuoi che cambi in fondo?

Ovviamente se la casa è in Sicilia la scelta influirà poco, ma se siamo in zona climatica dove la temperatura di progetto è -10° C, allora la decisione di installare finestre più semplici si riperquoterà sul progetto intero e sulle nostre tasche:

Volevamo una casa che a mantenerla in futuro ci costasse niente! volevamo una casa che si riscaldasse con un fiammifero! volevamo una casa passiva che funzionasse esclusivamente con l’aria di mandata della ventilazione meccanica controllata e adesso decidiamo per delle finestre più economiche…

Le finestre più economiche disperdono di più

Il termotecnico ci aveva avvisati: finirà che aumenta il carico termico!

  • Le finestre più economiche disperdono di più e quindi anche la quantità di calore, per unità di tempo, che devo fornire alla casa sarà di più. La potenza che devo fornire è aumentata!
  • In base al carico termico (che indica la potenza (Watt) da fornire all’impianto) il termotecnico deve dimensionare gli impianti

Ok, le finestre sono più scadenti, ma possiamo già sapere il consumo energetico in più su base annua?

Parliamo di 40mq di finestre e la zona climatica è F con 3001 gradi giorno di Trento, (cose da corso Ceph).

La differenza tra la trasmittanza Uw delle finestre top e quelle scelte successivamente vale Uw = 0,40 W/m2K

  • Per conoscere il fabbisogno per riscaldamento in più (kWh/m2a) dovuto alla maggiore dispersione dobbiamo calcolare così:

40 m2 * 0,40 W/m2K * 72 kKh/a = 1152 kWh/a

  • Per conoscere il carico termico in più (Watt) dovuto alla maggiore dispersione dobbiamo calcolare così:

(20°C – (-10°C)) * 40 m2 * 0,40 W/m2K = 480 Watt

Se la pompa di calore che si occupa di fornire il riscaldamento ha un CLA pari a 3 si può già calcolare il consumo elettrico in più:

1152 kWh/a / 3 = 384 kWh/a

384 kWh/a * 0,30 euro/kWh = 115 euro / anno

Le finestre sono un elemento dell’edificio che lentamente invecchia e si rovina, specialmente se si utilizzano malamente e non si esegue nessuna manutenzione. Bisogna ammettere che comunque una ventina d’anni restano lì e fanno il loro dovere egregiamente. Pensate che in una casa con ventilazione meccanica controllata le finestre non vengono “tartassate” come abitualmente e una volta installate restano lì, chiuse, in attesa della mezza stagione o del giorno delle grandi pulizie: la loro vita media si allunga (come la nostra) e allora consideriamole in un arco di 30 anni.

Se ci riferiamo a 30 anni di vita per le finestre forse valeva ben la pena scegliere le finestre con prestazioni migliori anzichè essere felici di aver risparmiato 3.000 euro il giorno dell’ordinazione al serramentista! Oppure no?

A quale Valore Attuale corrispondono i costi in più per la sola corrente elettrica? Devo tenere conto che da quest’anno in poi dovrò spendere un’ottantina di euro per 30anni. Allora, a che capitale di oggi corrispondono questi 115 euro di corrente per trent’anni?

30 anni di vita per le finestre

115 euro / anno * (1-(1+0,02)^-30) / 0,02 = 2.576 euro

Per tirare le somme si può affermare che pensando di risparmiare 3.000 euro in relatà si sono risparmiati 400 euro abbondanti, senza tenere però conto che:

  • il termotecnico ha dovuto proporre un impianto maggiorato
  • il termotecnico ha dovuto probabilmente aggiungere qualche corpo scaldante
  • gli ambienti interni in prossimità delle vetrate offrono un comfort compromesso a causa della maggiore asimmetria della temperatura radiativa
  • e probabilmente l’edificio non si può più certificare come PassivHaus.

federico_sampaoli_espertocasaclimacom ipha_member View federico sampaoli's profile on LinkedIn

  questo articolo è stato ideato, scritto e diretto da federico sampaoli, vuoi pubblicare un tuo articolo? scrivimi, lo prenderò in grande considerazione.

diventa anche Tu sostenitore di espertocasaclima.  esperto casaclima

- il mio profilo LinkedIn: Lin  - articoli pubblicati di recente: eCC  - commenti al blog: feed        - i miei tweet: Tw

Quanto influisce il ponte termico del balcone sulle dispersioni termiche annue?

Parlare di kWh/m2a (kWh per metro quadrato all’anno) è argomento facile e chiaro per un termotecnico, un po’ meno chiaro, ma soprattutto meno significativo per un committente o un proprietario di casa.

kWh:m2a fabbisogno per riscaldamento

La casa che consuma meno di tutte ha un fabbisogno termico per riscaldamento di massimo 15 kWh/m2a. Non è che questo dato dica molto ad una persona comune, non è come dire viaggio a 15 km/h, questo dato sì che fornisce a chiunque la percezione di andar piano!

Questi 15 kWh/m2a ci dicono poco lo so, a quasi tutti dicono niente. Ma facciamo un atto di fede:

una PassivHaus ha fabbisogno termico per riscaldamento di 15 kWh/m2a (anche meno)

kWh:m2a fabbisogno per riscaldamento

con questo dato iniziamo ad orientarci nel mondo dei numeri dell’efficienza energetica! Vi dico anche che un edificio può essere ancora più spinto sotto l’aspetto “dispersioni”, e disperdere ancora meno, e avere un fabbisogno ancora minore, ma si andrebbe a realizzare qualcosa di anti-economico e perciò con poco senso.

Non perdiamo il filo…, abbiamo fissato in mente (atto di fede) che una Casa Passiva ha un fabbisogno termico per riscaldamento di 15 kWh/m2a (così come tutti sanno bene, senza esserci mai saliti, che una Ferrari supera i 300 km/h, e il dato rende bene l’idea di alta velocità).

kWh:m2a fabbisogno per riscaldamento

Ora pensiamo al nostro balcone di casa: che sia un ponte termico l’abbiamo capito (o sentito dire) tutti. Ma in numeri, cosa vale questo ponte termico?

ponte termico balcone terrazza

Prendiamo per già calcolato che il ponte termico del nostro balcone valga 0,68 W/mK, questo è detto coefficiente lineico di dispersione termica attraverso il ponte termico.

Lineico? sì, è riferito ai metri lineari. Diciamo che il nostro balcone sia lungo 5 metri.

Allora, quanto influisce sulle dispersioni termiche annue il ponte termico del balcone? Tanto? Poco? Insomma? Non lo so? Beh, se siamo a Palermo la dispersione conta meno, se siamo a Padova, in zona climatica E, con 2383 Gradi Giorno, la dispersione termica annua conta di più.

Facciamo due conti:

5m * 0,68 W/mK * 57kKh/a = 194 kWh/a

kWh/a non si possono confrontare con kWh/m2a, quindi prendiamo come esempio una casa di 100 mq:

le dispersioni termiche annue, per metro quadro, causate dal ponte termico del balcone, valgono 1,94 kWh/m2a

Capito dove voglio arrivare?

Una casa superprogettata, che si potrebbe certificare come PassivHaus, deve contenere il fabbisogno entro i 15 kWh/m2a e un semplice errore come la progettazione di un balcone senza taglio termico vale quasi 2 kWh/m2a

Ho reso l’idea? 15 contro 2…..

La progettazione è importante! Il dettaglio è importante! Non riempire il cantiere di compromessi è importante! Il risultato può essere grande

 

lettura senza banner pubblicitari grazie alla generosità dei lettori – dona anche Tu!

+ involucro - impianti copyright

federico_sampaoli_espertocasaclimacom  ipha_member   articolo ideato, scritto e diretto da Federico Sampaoli, impegnato a favore delle persone, del comfort e dell’open information, titolare e caporedattore di espertocasaclima.com – blog di formazione e comunicazione online dal 2009.

Se vuoi conoscere il mio profilo LinkedIn

Entra anche Tu nella lista dei sostenitori del Blog espertoCasaClima :


Visita il profilo di federico su Pinterest.